The deep-sea remains the biggest challenge to biodiversity exploration, and anthropogenic disturbances extend well into this realm, calling for urgent management strategies. One of the most diverse, productive, and vulnerable ecosystems in the deep sea are sponge grounds. Currently, environmental DNA (eDNA) metabarcoding is revolutionising the field of biodiversity monitoring, yet complex deep-sea benthic ecosystems remain challenging to assess even with these novel technologies.
View Article and Find Full Text PDFEnviron Microbiome
March 2024
Background: Poriferans (sponges) are highly adaptable organisms that can thrive in diverse marine and freshwater environments due, in part, to their close associations with internal microbial communities. This sponge microbiome can be acquired from the surrounding environment (horizontal acquisition) or obtained from the parents during the reproductive process through a variety of mechanisms (vertical transfer), typically resulting in the presence of symbiotic microbes throughout all stages of sponge development. How and to what extent the different components of the microbiome are transferred to the developmental stages remain poorly understood.
View Article and Find Full Text PDFSponges largely depend on their symbiotic microbes for their nutrition, health, and survival. This is especially true in high microbial abundance (HMA) sponges, where filtration is usually deprecated in favor of a larger association with prokaryotic symbionts. Sponge-microbiome association is substantially less understood for deep-sea sponges than for shallow water species.
View Article and Find Full Text PDFThe diversity and function of sponge-associated symbionts is now increasingly understood; however, we lack an understanding of how they dynamically behave to ensure holobiont stability in the face of environmental variation. Here, we performed a metatransciptomic analysis on three microbial symbionts of the sponge Cymbastela concentrica in situ over 14 months and through differential gene expression and correlation analysis to environmental variables uncovered differences that speak to their metabolic activities and level of symbiotic and environmental interactions. The nitrite-oxidizing Ca.
View Article and Find Full Text PDFDisease has become an increasingly recognised problem in the marine environment, but our understanding of the factors that drive disease or our ability to predict its occurrence is limited. Marine sponges are known for their close associations with microorganisms, which are generally accepted to underpin sponge health and function. The aim of this study is to explore whether the microbial community composition of sponges can act as a predictor of disease occurrence under stressful environmental conditions.
View Article and Find Full Text PDFMost animals, including sponges (Porifera), have species-specific microbiomes. Which genetic or environmental factors play major roles structuring the microbial community at the intraspecific level in sponges is, however, largely unknown. In this study, we tested whether geographic location or genetic structure of conspecific sponges influences their microbial assembly.
View Article and Find Full Text PDFThe peripheral areas of deep-sea hydrothermal vents are often inhabited by an assemblage of animals distinct to those living close to vent chimneys. For many such taxa, it is considered that peak abundances in the vent periphery relate to the availability of hard substrate as well as the increased concentrations of organic matter generated at vents, compared to background areas. However, the peripheries of vents are less well-studied than the assemblages of vent-endemic taxa, and the mechanisms through which peripheral fauna may benefit from vent environments are generally unknown.
View Article and Find Full Text PDFThe genomes of non-bilaterian metazoans are key to understanding the molecular basis of early animal evolution. However, a full comprehension of how animal-specific traits, such as nervous systems, arose is hindered by the scarcity and fragmented nature of genomes from key taxa, such as Porifera. Ephydatia muelleri is a freshwater sponge found across the northern hemisphere.
View Article and Find Full Text PDFCo-evolutionary theory predicts that if beneficial microbial symbionts improve host fitness, they should be faithfully transmitted to offspring. More recently, the hologenome theory of evolution predicts resemblance between parent and offspring microbiomes and high partner fidelity between host species and their vertically transmitted microbes. Here, we test these ideas in multiple coexisting host species with highly diverse microbiota, leveraging known parent-offspring pairs sampled from eight species of wild marine sponges (Porifera).
View Article and Find Full Text PDFBacteroidetes is one of the dominant phyla of ocean bacterioplankton, yet its diversity and population structure is poorly understood. To advance in the delineation of ecologically meaningful units within this group, we constructed near full-length 16S rRNA gene clone libraries from contrasting marine environments in the NW Mediterranean. Based on phylogeny and the associated ecological variables (depth and season), 24 different Bacteroidetes clades were delineated.
View Article and Find Full Text PDFEnviron Microbiol Rep
August 2018
Sponges interact with diverse and rich communities of bacteria that are phylogenetically often distinct from their free-living counterparts. Recent genomics and metagenomic studies have indicated that bacterial sponge symbionts also have distinct functional features from free-living bacteria; however, it is unclear, if such genome-derived functional signatures are common and present in different symbiont taxa. We therefore compared here a large set of genomes from cultured (Pseudovibrio, Ruegeria and Aquimarina) and yet-uncultivated (Synechococcus) bacteria found in either sponge-associated or free-living sources.
View Article and Find Full Text PDFViruses are a key component of marine ecosystems, but the assessment of their global role in regulating microbial communities and the flux of carbon is precluded by a paucity of data, particularly in the deep ocean. We assessed patterns in viral abundance and production and the role of viral lysis as a driver of prokaryote mortality, from surface to bathypelagic layers, across the tropical and subtropical oceans. Viral abundance showed significant differences between oceans in the epipelagic and mesopelagic, but not in the bathypelagic, and decreased with depth, with an average power-law scaling exponent of -1.
View Article and Find Full Text PDFDespite an increased understanding of functions in sponge microbiomes, the interactions among the symbionts and between symbionts and host are not well characterized. Here we reconstructed the metabolic interactions within the sponge Cymbastela concentrica microbiome in the context of functional features of symbiotic diatoms and the host. Three genome bins (CcPhy, CcNi and CcThau) were recovered from metagenomic data of C.
View Article and Find Full Text PDFThe free-living (FL) and particle-attached (PA) marine microbial communities have repeatedly been proved to differ in their diversity and composition in the photic ocean and also recently in the bathypelagic ocean at a global scale. However, although high taxonomic ranks exhibit preferences for a PA or FL mode of life, it remains poorly understood whether two clear lifestyles do exist and how these are distributed across the prokaryotic phylogeny. We studied the FL (<0.
View Article and Find Full Text PDFCatalysed reporter deposition-fluorescence in situ hybridization (CARD-FISH) is a powerful approach to quantify bacterial taxa. In this study, we compare the performance of the widely used Bacteroidetes CF319a probe with the new CF968 probe. In silico analyses and tests with isolates demonstrate that CF319a hybridizes with non-Bacteroidetes sequences from the Rhodobacteraceae and Alteromonadaceae families.
View Article and Find Full Text PDFThe abundance and structure of Bacteroidetes populations at diverse temporal and spatial scales were investigated in the Northwestern Mediterranean Sea. At a temporal scale, their relative abundance exhibited a marked seasonality, since it was higher in spring and decreased in winter. Similarly, Bacteroidetes community structure encompassed three main groups (winter, spring and summer-fall), which mimicked global bacterioplankton seasonality.
View Article and Find Full Text PDFAssumptions on the matching specificity of group-specific bacterial primers may bias the interpretation of environmental microbial studies. As available sequence data continue growing, the performance of primers and probes needs to be reevaluated. Here, we present an evaluation of several commonly used and one newly designed Bacteroidetes-specific primer (CF418).
View Article and Find Full Text PDFSenescence-accelerated prone (SAMP) strain 8 mice suffer an earlier development of cognitive age-related pathologies and a shorter life span than conventional mice. Protein alterations in astrocytes, in addition to those in neurons, may contribute to neurodegenerative damage. We applied proteomics techniques to study cell-specific early markers of brain aging-related degeneration in SAMP8.
View Article and Find Full Text PDFEarly onset increases in oxidative stress and tau pathology are present in the brain of senescence-accelerated mice prone (SAMP8). Astrocytes play an essential role, both in determining the brain's susceptibility to oxidative damage and in protecting neurons. In this study, we examine changes in tau phosphorylation, oxidative stress and glutamate uptake in primary cultures of cortical astrocytes from neonatal SAMP8 mice and senescence-accelerated-resistant mice (SAMR1).
View Article and Find Full Text PDF