Publications by authors named "Cristina D Guibao"

Poration of the outer mitochondrial membrane by the effector BCL-2 proteins BAK and BAX initiates apoptosis. BH3-only initiators BID and BIM trigger conformational changes in BAK and BAX transforming them from globular dormant proteins to oligomers of the apoptotic pores. Small molecules that can directly activate effectors are being sought for applications in cancer treatment.

View Article and Find Full Text PDF

BCL-2 proteins regulate mitochondrial poration in apoptosis initiation. How the pore-forming BCL-2 Effector BAK is activated remains incompletely understood mechanistically. Here we investigate autoactivation and direct activation by BH3-only proteins, which cooperate to lower BAK threshold in membrane poration and apoptosis initiation.

View Article and Find Full Text PDF

MLKL and its obligate upstream receptor interacting protein kinase 3 are essential components of necroptosis. It is well established that MLKL is the executioner of plasma membrane rupture in necroptosis. In healthy cells MLKL is dormant.

View Article and Find Full Text PDF

Necroptosis is an inflammatory form of programmed cell death executed through plasma membrane rupture by the pseudokinase mixed lineage kinase domain-like (MLKL). We previously showed that MLKL activation requires metabolites of the inositol phosphate (IP) pathway. Here we reveal that I(1,3,4,6)P, I(1,3,4,5,6)P, and IP promote membrane permeabilization by MLKL through directly binding the N-terminal executioner domain (NED) and dissociating its auto-inhibitory region.

View Article and Find Full Text PDF

The effector B cell lymphoma-2 (BCL-2) protein BCL-2 ovarian killer (BOK) induces mitochondrial outer membrane permeabilization (MOMP) to initiate apoptosis upon inhibition of the proteasome. How BOK mediates MOMP is mechanistically unknown. The NMR structure of the BCL-2 core of human BOK reveals a conserved architecture with an atypical hydrophobic groove that undergoes conformational exchange.

View Article and Find Full Text PDF

The Cas family scaffolding protein p130Cas is a Src substrate localized in focal adhesions (FAs) and functions in integrin signaling to promote cell motility, invasion, proliferation, and survival. p130Cas targeting to FAs is essential for its tyrosine phosphorylation and downstream signaling. Although the N-terminal SH3 domain is important for p130Cas localization, it has also been reported that the C-terminal region is involved in p130Cas FA targeting.

View Article and Find Full Text PDF

Proline-rich tyrosine kinase 2 (Pyk2) is a nonreceptor tyrosine kinase and belongs to the focal adhesion kinase (FAK) family. Like FAK, the C-terminal focal adhesion-targeting (FAT) domain of Pyk2 binds to paxillin, a scaffold protein in focal adhesions; however, the interaction between the FAT domain of Pyk2 and paxillin is dynamic and unstable. Leupaxin is another member in the paxillin family and was suggested to be the native binding partner of Pyk2; Pyk2 gene expression is strongly correlated with that of leupaxin in many tissues including primary breast cancer.

View Article and Find Full Text PDF

Proline-rich tyrosine kinase 2 (Pyk2) is a member of the focal adhesion kinase (FAK) subfamily of cytoplasmic tyrosine kinases. The C-terminal Pyk2-focal adhesion targeting (FAT) domain binds to paxillin, an adhesion molecule. Paxillin has five leucine-aspartate (LD) motifs (LD1-LD5).

View Article and Find Full Text PDF

Smoothened (Smo) is a member of the Frizzled (FzD) class of G-protein-coupled receptors (GPCRs), and functions as the key transducer in the Hedgehog (Hh) signalling pathway. Smo has an extracellular cysteine-rich domain (CRD), indispensable for its function and downstream Hh signalling. Despite its essential role, the functional contribution of the CRD to Smo signalling has not been clearly elucidated.

View Article and Find Full Text PDF

The G protein-coupled receptor kinase-interacting protein 1 (GIT1) is a multidomain protein that plays an important role in cell adhesion, motility, cytoskeletal remodeling, and membrane trafficking. GIT1 mediates the localization of the p21-activated kinase (PAK) and PAK-interactive exchange factor to focal adhesions, and its activation is regulated by the interaction between its C-terminal paxillin-binding domain (PBD) and the LD motifs of paxillin. In this study, we determined the solution structure of rat GIT1 PBD by NMR spectroscopy.

View Article and Find Full Text PDF

Cell migration is a dynamic process that requires the coordinated formation and disassembly of focal adhesions (FAs). Several proteins such as paxillin, focal adhesion kinase (FAK), and G protein-coupled receptor kinase-interacting protein 1 (GIT1) are known to play a regulatory role in FA disassembly and turnover. However, the mechanisms by which this occurs remain to be elucidated.

View Article and Find Full Text PDF

The C-terminal region of focal adhesion kinase (FAK) consists of a right-turn, elongated, four-helix bundle termed the focal adhesion targeting (FAT) domain. The structure of this domain is maintained by hydrophobic interactions, and this domain is also the proposed binding site for the focal adhesion protein paxillin. Paxillin contains five well-conserved LD motifs, which have been implicated in the binding of many focal adhesion proteins.

View Article and Find Full Text PDF

Focal adhesion kinase (FAK) is a nonreceptor tyrosine kinase whose focal adhesion targeting (FAT) domain interacts with other focal adhesion molecules in integrin-mediated signaling. Localization of activated FAK to focal adhesions is indispensable for its function. Here we describe a solution structure of the FAT domain bound to a peptide derived from paxillin, a FAK-binding partner.

View Article and Find Full Text PDF