Publications by authors named "Cristina Crava"

Orius laevigatus (Hemiptera, Anthocoridae) is a generalist predator extensively used for the biocontrol of diverse agricultural pests. Previous studies on O. laevigatus have focused on the improvement of insect genetic traits, but little is known about its association with microbes, especially viruses that may influence its production and efficacy.

View Article and Find Full Text PDF

A wide variety of insect-specific non-retroviral RNA viruses specifically infect insects. During viral infection, fragments of viral sequences can integrate into the host genomes creating non-retroviral endogenous viral elements (nrEVEs). Although the exact function of nrEVEs is so far unknown, some studies suggest that nrEVEs may interfere with virus replication by producing PIWI-interacting RNAs (piRNAs) that recognize and degrade viral RNAs through sequence complementarity.

View Article and Find Full Text PDF
Article Synopsis
  • Arbuscular mycorrhizal fungi (AMF) form beneficial relationships with terrestrial plants, improving their nutrition and defense against pests, but their effects on pest interactions were not well understood before this study.
  • The research showed that when tomato plants were associated with AMF and previously exposed to herbivory, the growth of the pest Spodoptera exigua was reduced, and the pest became more vulnerable to natural entomopathogens like Bacillus thuringiensis and SeMNPV.
  • These findings suggest that integrating AMF with bacterial and viral entomopathogens could enhance biological pest control strategies in agriculture.
View Article and Find Full Text PDF

The Mediterranean fruit fly (medfly), , is an agricultural pest of a wide range of fruits. The advent of high-throughput sequencing has boosted the discovery of RNA viruses infecting insects. In this article, we aim to characterize the RNA virome and viral sRNA profile of medfly.

View Article and Find Full Text PDF

Baculoviruses are double-stranded DNA entomopathogenic viruses that infect predominantly insects of the order Lepidoptera. Research in the last decade has started to disentangle the mechanisms underlying the insect-virus interaction, particularly focusing on the effects of the baculovirus infection in the host's physiology. Among crucial physiological functions, olfaction has a key role in reproductive tasks, food source detection and enemy avoidance.

View Article and Find Full Text PDF

Drosophila suzukii (Matsumura) (Diptera: Drosophilidae) also known as spotted-wing drosophila (SWD), is a pest native to Southeast Asia. In the last few decades, the pest has expanded its range to affect all major European and American fruit production regions. SWD is a highly adaptive insect that is able to disperse, survive, and flourish under a range of environmental conditions.

View Article and Find Full Text PDF

Background: Several bioinformatics pipelines have been developed to detect sequences from viruses that integrate into the human genome because of the health relevance of these integrations, such as in the persistence of viral infection and/or in generating genotoxic effects, often progressing into cancer. Recent genomics and metagenomics analyses have shown that viruses also integrate into the genome of non-model organisms (i.e.

View Article and Find Full Text PDF

Horizontal gene transfer from viruses to eukaryotic cells is a pervasive phenomenon. Somatic viral integrations are linked to persistent viral infection whereas integrations into germline cells are maintained in host genomes by vertical transmission and may be co-opted for host functions. In the arboviral vector Aedes aegypti, an endogenous viral element from a nonretroviral RNA virus (nrEVE) was shown to produce PIWI-interacting RNAs (piRNAs) to limit infection with a cognate virus.

View Article and Find Full Text PDF

Insect chemosensation is crucial for many aspects related to food seeking, enemy avoidance, and reproduction. Different families of receptors and binding proteins interact with chemical stimuli, including odorant receptors (ORs), ionotropic receptors (IRs), gustatory receptors (GRs), odorant binding proteins (OBPs) and chemosensory proteins (CSPs). In this work, we describe the chemosensory-related gene repertoire of the worldwide pest Spodoptera exigua (Lepidoptera: Noctuidae), focusing on the transcripts expressed in larvae, which feed on many horticultural crops producing yield losses.

View Article and Find Full Text PDF

Drosophila suzukii is an invasive pest that prefers to lay eggs in ripening fruits, whereas most closely related Drosophila species exclusively use rotten fruit as oviposition site. This behaviour is allowed by an enlarged and serrated ovipositor that can pierce intact fruit skin, and by multiple contact sensory systems (mechanosensation and taste) that detect the optimal egg-laying substrates. Here, we tested the hypothesis that bristles present in the D.

View Article and Find Full Text PDF

Drosophila suzukii (Matsumura) is a vinegar fly species that originates from Eastern Asia and has spread throughout Europe and the Americas since its initial detection in United States in 2008. Its relatively large, sclerotized, and serrated ovipositor enables the ability to penetrate ripening fruits, providing a protected environment for its egg and larval stages. Because the mechanism of oviposition site selection of D.

View Article and Find Full Text PDF

Insect olfaction modulates basal behaviors and it is often influenced by the physiological condition of each individual such as the reproductive state. Olfactory plasticity can be achieved by modifications at both peripheral and central nervous system levels. Here we performed a genome-wide transcriptomic analysis of the main olfactory organ, the antenna, to investigate how gene expression varies with female mating status in Drosophila suzukii, a destructive and invasive soft fruit pest.

View Article and Find Full Text PDF

Endophytic insects provide the textbook examples of herbivores that manipulate their host plant's physiology, putatively altering source/sink relationships by transferring cytokinins (CK) to create 'green islands' that increase the nutritional value of infested tissues. However, unambiguous demonstrations of CK transfer are lacking. Here we show that feeding by the free-living herbivore on is characterized by stable nutrient levels, increased CK levels and alterations in CK-related transcript levels in attacked leaves, in striking similarity to endophytic insects.

View Article and Find Full Text PDF

Background: The evolutionary arms race between plants and insects has driven the co-evolution of sophisticated defense mechanisms used by plants to deter herbivores and equally sophisticated strategies that enable phytophagous insects to rapidly detoxify the plant's defense metabolites. In this study, we identify the genetic determinants that enable the mirid, Tupiocoris notatus, to feed on its well-defended host plant, Nicotiana attenuata, an outstanding model for plant-insect interaction studies.

Results: We used an RNAseq approach to evaluate the global gene expression of T.

View Article and Find Full Text PDF

Chemosensory perception allows insects to interact with the environment by perceiving odorant or tastant molecules; genes encoding chemoreceptors are the molecular interface between the environment and the insect, and play a central role in mediating its chemosensory behavior. Here, we explore how the evolution of these genes in the emerging pest Drosophila suzukii correlates with the peculiar ecology of this species. We annotated approximately 130 genes coding for gustatory receptors (GRs) and divergent ionotropic receptors (dIRs) in D.

View Article and Find Full Text PDF

How the evolution of olfactory genes correlates with adaption to new ecological niches is still a debated topic. We explored this issue in Drosophila suzukii, an emerging model that reproduces on fresh fruit rather than in fermenting substrates like most other Drosophila We first annotated the repertoire of odorant receptors (ORs), odorant binding proteins (OBPs), and antennal ionotropic receptors (aIRs) in the genomes of two strains of D. suzukii and of its close relative Drosophila biarmipes We then analyzed these genes on the phylogeny of 14 Drosophila species: whereas ORs and OBPs are characterized by higher turnover rates in some lineages including D.

View Article and Find Full Text PDF

Antimicrobial peptides (AMPs) and lysozymes are the main effectors of the insect immune system, and they are involved in both local and systemic responses. Among local responses, midgut immune reaction plays an important role in fighting pathogens that reach the insect body through the oral route, as do many microorganisms used in pest control. Under this point of view, understanding how insects defend themselves locally during the first phases of infections caused by food-borne pathogens is important to further improve microbial control strategies.

View Article and Find Full Text PDF

Aminopeptidase N (APN) isoforms from Lepidoptera are known for their involvement in the mode of action of insecticidal Cry proteins from Bacillus thuringiensis. These enzymes belong to a protein family with at least eight different members that are expressed simultaneously in the midgut of lepidopteran larvae. Here, we focus on the characterization of the APNs from Ostrinia nubilalis (OnAPNs) to identify potential Cry receptors.

View Article and Find Full Text PDF

Tolerance to Bacillus thuringiensis Cry1Ab toxin in Spanish Ostrinia nubilalis populations was analyzed by quantitative genetic techniques, using isolines established from field-derived insects. F1 offspring was tested for susceptibility to trypsin activated Cry1Ab using a concentration that caused a mean larval mortality of 87% (±17% SD). The progeny of the most tolerant isolines (that had shown mortalities lower than 60%) was crossed to obtain the F2 generation that was exposed to the same Cry1Ab concentration.

View Article and Find Full Text PDF
Article Synopsis
  • * A review of over 150 RNAi experiments reveals that RNAi is most effective in the Saturniidae family and immunity-related genes, while epidermal gene expression is more challenging to silence.
  • * The study highlights the need for more research on RNAi mechanisms in Lepidoptera and its links to immune responses, with ongoing data collection to improve understanding through a public database.
View Article and Find Full Text PDF

Aminopeptidases N (APNs) are a class of ectoenzymes present in lepidopteran larvae midguts, involved in the Bacillus thuringiensis (Bt) toxins mode of action. In the present work, seven aminopeptidases have been cloned from the midgut of Ostrinia nubilalis, the major Lepidopteran corn pest in the temperate climates. Six sequences were identified as APNs because of the presence of the HEXXH(X)18E and GAMEN motifs, as well as the signal peptide and the GPI-anchor sequences.

View Article and Find Full Text PDF