Publications by authors named "Cristina Cozzini"

Article Synopsis
  • Researchers aimed to create pseudo-CT (pCT) images of the pelvis using zero echo time (ZTE) MRI sequences and compared their effectiveness to traditional CT scans.
  • The study involved 91 patients, but 11 were excluded; 60 MRI scans were used to train a deep learning model, while 20 were evaluated for comparison.
  • Results indicated that pCT images showed high-quality bone representation and accurate geometric measurements, demonstrating their potential for clinical uses without radiation exposure.
View Article and Find Full Text PDF

Background: Positron emission tomography-magnetic resonance (PET-MR) attenuation correction is challenging because the MR signal does not represent tissue density and conventional MR sequences cannot image bone. A novel zero echo time (ZTE) MR sequence has been previously developed which generates signal from cortical bone with images acquired in 65 s. This has been combined with a deep learning model to generate a synthetic computed tomography (sCT) for MR-only radiotherapy.

View Article and Find Full Text PDF

. In MR-only clinical workflow, replacing CT with MR image is of advantage for workflow efficiency and reduces radiation to the patient. An important step required to eliminate CT scan from the workflow is to generate the information provided by CT via an MR image.

View Article and Find Full Text PDF

Background And Purpose: Magnetic Resonance (MR)-only radiotherapy enables the use of MR without the uncertainty of MR-Computed Tomography (CT) registration. This requires a synthetic CT (sCT) for dose calculations, which can be facilitated by a novel Zero Echo Time (ZTE) sequence where bones are visible and images are acquired in 65 seconds. This study evaluated the dose calculation accuracy for pelvic sites of a ZTE-based Deep Learning sCT algorithm developed by GE Healthcare.

View Article and Find Full Text PDF

Purpose: To introduce a new method for in-phase zero TE (ipZTE) musculoskeletal MR imaging.

Methods: ZTE is a 3D radial imaging method, which is sensitive to chemical shift off-resonance signal interference, especially around fat-water tissue interfaces. The ipZTE method addresses this fat-water chemical shift artifact by acquiring each 3D radial spoke at least twice with varying readout gradient amplitude and hence varying effective sampling time.

View Article and Find Full Text PDF

Purpose: To describe a method for converting Zero TE (ZTE) MR images into X-ray attenuation information in the form of pseudo-CT images and demonstrate its performance for (1) attenuation correction (AC) in PET/MR and (2) dose planning in MR-guided radiation therapy planning (RTP).

Methods: Proton density-weighted ZTE images were acquired as input for MR-based pseudo-CT conversion, providing (1) efficient capture of short-lived bone signals, (2) flat soft-tissue contrast, and (3) fast and robust 3D MR imaging. After bias correction and normalization, the images were segmented into bone, soft-tissue, and air by means of thresholding and morphological refinements.

View Article and Find Full Text PDF

X-Ray Phase-Contrast (XPC) imaging is a novel technology with a great potential for applications in clinical practice, with breast imaging being of special interest. This work introduces an intuitive methodology to combine and visualize relevant diagnostic features, present in the X-ray attenuation, phase shift and scattering information retrieved in XPC imaging, using a Fourier domain fusion algorithm. The method allows to present complementary information from the three acquired signals in one single image, minimizing the noise component and maintaining visual similarity to a conventional X-ray image, but with noticeable enhancement in diagnostic features, details and resolution.

View Article and Find Full Text PDF

Differential phase-contrast X-ray imaging using a Talbot-Lau interferometer has recently shown promising results for applications in medical imaging. However, reducing the applied radiation dose remains a major challenge. In this study, we consider the realization of a Talbot-Lau interferometer in a high Talbot order to increase the signal-to-noise ratio for low-dose applications.

View Article and Find Full Text PDF

Numerical wave-optical simulations of X-ray differential phase-contrast imaging using grating interferometry require the oversampling of gratings and object structures in the range of few micrometers. Consequently, fields of view of few millimeters already use large amounts of a computer's main memory to store the propagating wave front, limiting the scope of the investigations to only small-scale problems. In this study, we apply an approximation to the Fresnel-Kirchhoff diffraction theory to overcome these restrictions by dividing the two-dimensional wave front up into 1D lines, which are processed separately.

View Article and Find Full Text PDF

Phase retrieval in differential X-ray phase contrast imaging involves a one dimensional integration step. In the presence of noise, standard integration methods result in image blurring and streak artifacts. This work proposes a regularized integration method which takes the availability of two dimensional data as well as the integration-specific frequency-dependent noise amplification into account.

View Article and Find Full Text PDF