Publications by authors named "Cristina Cozzani"

The breast and ovarian cancer susceptibility genes, BRCA1 and BRCA2, are key players in the homologous recombination (HR) repair pathway and act as tumor suppressors by maintaining genome stability. The yeast Saccharomyces cerevisiae has no BRCA1/2 homolog; however, a number of HR genes are evolutionary conserved between human and yeast. Among them, RAD52 is involved in DNA double strand break (DSB) repair by HR, and promotes genome stability.

View Article and Find Full Text PDF

Evaluation of the functional impact of germline BRCA1 variants that are likely to be associated to breast and ovarian cancer could help to investigate the mechanism of BRCA1 tumorigenesis. Expression of pathogenic BRCA1 missense variants increased homologous recombination (HR) and gene reversion (GR) in yeast. We thought to exploit yeast genetics to shed light on BRCA1-induced genome instability and tumorigenesis.

View Article and Find Full Text PDF

BRCA1 interacts with several proteins implicated in homologous and non homologous recombination and in mismatch repair. The aim of this study is to determine if MSH2, a well known partner of BRCA1 involved in DNA repair, may contribute to breast and ovarian cancer development and progression. To better understand the functional interaction between BRCA1 and MSH2, we studied the effect of the deletion of MSH2 gene on BRCA1-induced genome instability in yeast.

View Article and Find Full Text PDF