Publications by authors named "Cristina Cejudo Bastante"

PETG (poly(ethylene glycol-co-cyclohexane-1,4-dimethanol terephthalate)) is an amorphous copolymer, biocompatible, recyclable, and versatile. Nowadays, it is being actively researched for biomedical applications. However, proposals of PETG as a platform for the loading of bioactive compounds from natural extract are scarce, as well as the effect of the supercritical impregnation on this polymer.

View Article and Find Full Text PDF

Background: Pitaya is a fruit with high consumer acceptance and health benefits. Pitaya peel is a waste product with potential in the food industry, as an antioxidant enrichment and natural colouring. Therefore, there is an interest in recovering its constituents and searching for pitaya species with greater potential.

View Article and Find Full Text PDF

Enhanced solvent extraction (ESE) and pressurized liquid extraction (PLE) have been used for the first time to obtain antioxidant compounds from leaves. The effects of pressure (100-250 bar), temperature (55-75 °C) and the composition of the extraction solvent (ethanol, water and hydroalcoholic mixtures) were evaluated according to multilevel factorial designs. PLE provided the largest extraction yields compared to ESE, as well as a greater impact of the operating conditions studied.

View Article and Find Full Text PDF

The addition of naturally active compounds to implantable polymers is an efficient strategy against inflammation issues that might lead to rejection, while promoting controlled re-endothelialization of the tissues. This work proposes the use of winemaking by-products with high active properties of biomedical interest to obtain bioactive PLA by using supercritical technologies. First, two red grape pomace extracts, obtained by high-pressure extraction with supercritical CO and cosolvents (either ethanol or water-ethanol), have been studied.

View Article and Find Full Text PDF

Identifying new polymers from natural resources that can be effectively functionalized can have a substantial impact on biomedical devices and food preservation fields. Some of these polymers would be made of biodegradable, renewable and compostable materials, and present the kind of porosity required to effectively carry active compounds that confer on them the desired properties for their intended applications. Some natural extracts, such as mango leaf extract, have been proven to have high levels of antioxidant, antimicrobial or anti-inflammatory properties, making them good candidates for controlled-release applications.

View Article and Find Full Text PDF

The leaves of as agricultural waste represent a convenient source of antioxidants. In combination with supercritical CO (scCO), assisted impregnation is an interesting strategy for the preparation of biomedical devices with specific bioactivity. For this purpose, 3D-printable filaments of thermoplastic polyurethane (TPU) and polylactic acid (PLA) were employed for the supercritical impregnation of ethanolic olive leaves extract (OLE) for biomedical application.

View Article and Find Full Text PDF

Cardiovascular diseases remain the leading cause of death worldwide, mainly triggered by the formation of atherosclerotic plaques that reduce blood flow. Angiogenic cell therapy based on endothelial colony forming cells (ECFCs) constitutes a promising alternative to promote vascular revascularization; however, under the oxidative environment that prevails in ischemic areas, these cells become impaired. Thus, it is necessary to investigate strategies to enhance their regenerative properties.

View Article and Find Full Text PDF

Some citrus by-products such as orange peel contains valuable compounds that could be recovered and restored into the food chain. In this study, an efficient valorization of orange peel has been investigated using green extraction, fractionation, and impregnation techniques. The first step included its extraction using CO and ethanol under different pressure (200-400 bar) and temperature (35-55 °C) conditions.

View Article and Find Full Text PDF

A supercritical solvent impregnation (SSI) technique was employed to incorporate, by batch- and semicontinuous-modes, bioactive olive leaf extract (OLE) into a food-grade multilayer polyethylene terephthalate/polypropylene (PET/PP) film for active food packaging applications. The inclusion of OLE in the polymer surfaces significantly modified the colour properties of the film. A correlation of 87.

View Article and Find Full Text PDF

Borage ( L.) seed oil is an important source of γ-linolenic acid, which is normally used as a treatment against different pathologies. Since the fractionation of this interesting seed oil has many environmental, economic and biological benefits, two borage fractionation techniques after extraction with CO under supercritical conditions have been studied: precipitation in two cyclone separators and countercurrent extraction column.

View Article and Find Full Text PDF

The objective of the present work was to develop a bioactive transdermal patch functionalized with leaf extracts (ALE) by means of supercritical impregnation technique. The potential of six different leaf extracts (ALE) obtained with the enhanced solvent system formed by carbon dioxide + ethanol/acetone was evaluated taking into account the antioxidant activity, total phenol composition and global extraction yields. For the impregnation of ALE, two drug supporting systems were tested: hydrocolloid sodium carboxymethyl cellulose (NaCMC) and polyester dressings (PD).

View Article and Find Full Text PDF

Ketoprofen (KET) is an anti-inflammatory drug often used in medicine due to its analgesic and antipyretic effects. If it is administered in a controlled form by means of different dosing devices, it acts throughout the patient's recovery period improving its efficacy. This study intends to support the use of supercritical solvent impregnation (SSI) as an efficient technique to develop polylactic acid (PLA) functionalized with ketoprofen, for use as controlled drug release devices.

View Article and Find Full Text PDF

There is an increasing demand for the use of new food packaging materials. In this study, natural jute fibers impregnated with a Petit Verdot Red Grape Pomace Extract (RGPE) was proposed as a new active food packaging material. Pressurized Liquid Extraction (PLE) and Enhanced Solvent Extraction (ESE) techniques were employed to obtain the bioactive RGPE.

View Article and Find Full Text PDF

Background: The two main acetification methodologies generally employed in the production of vinegar (surface and submerged cultures) were studied and compared for the production of orange vinegar. Polyphenols (UPLC/DAD) and volatiles compounds (SBSE-GC/MS) were considered as the main variables in the comparative study. Sensory characteristics of the obtained vinegars were also evaluated.

View Article and Find Full Text PDF

Several experiments were conducted to developed orange based vinegar by surface culture. The addition of sugar (sucrose and concentrated must) and the presence/absence of peel in the raw material (squeezed juice, peeled orange, non-peeled orange plus squeezed juice) have been studied during the development of the final product. Polyphenolic and volatile characterization and sensory analysis have also been carried out.

View Article and Find Full Text PDF