The Gel/Gas/Phr family of fungal beta(1,3)-glucanosyltransferases plays an important role in cell wall biogenesis by processing the main component beta(1,3)-glucan. Two subfamilies are distinguished depending on the presence or absence of a C-terminal cysteine-rich domain, denoted "Cys-box." The N-terminal domain (NtD) contains the catalytic residues for transglycosidase activity and is separated from the Cys-box by a linker region.
View Article and Find Full Text PDFNa,K-ATPase is a crucial enzyme for ion homeostasis in human tissues. Different isozymes are produced by assembly of four alpha- and three beta-subunits. The expression of the alpha3/beta1 isozyme is confined to brain and heart.
View Article and Find Full Text PDFGas1p is a glycosylphosphatidylinositol-anchored plasma membrane glycoprotein of Saccharomyces cerevisiae and is a representative of Family GH72 of glycosidases/transglycosidases, which also includes proteins from human fungal pathogens. Gas1p, Phr1-2p from Candida albicans and Gel1p from Aspergillus fumigatus have been shown to be beta-(1,3)-glucanosyltransferases required for proper cell wall assembly and morphogenesis. Gas1p is organized into three modules: a catalytic domain; a cys-rich domain; and a highly O-glycosylated serine-rich region.
View Article and Find Full Text PDFChitin synthase III is essential for the increase in chitin level and for cell integrity in cells lacking Gas1p, a beta(1,3)-glucanosyltransferase. In order to discover whether the upregulation of chitin synthesis proceeds through the canonical transport and activation pathway of Chs3p or through an alternative one, here we studied the effects of the inactivation of the GAS1 and CHS4-5-6-7 genes. All the double-null mutants showed a temperature-sensitive cell lysis phenotype that could be suppressed by the presence of an osmotic stabilizer.
View Article and Find Full Text PDF