Publications by authors named "Cristina Bartocci"

Telomeres are found at the end of chromosomes and are important for chromosome stability. Here we describe a specific telomere-associated protein: TZAP (telomeric zinc finger-associated protein). TZAP binds preferentially to long telomeres that have a low concentration of shelterin complex, competing with the telomeric-repeat binding factors TRF1 and TRF2.

View Article and Find Full Text PDF
Article Synopsis
  • When telomeres get critically short, they trigger a cellular response to DNA damage by recruiting repair factors to chromosome ends.
  • Researchers used a technique called proteomic isolation of chromatin fragments to study changes in chromatin when telomere dysfunction occurs due to loss of TRF2.
  • The study identified the polycomb group protein Ring1b as being essential for repairing damaged telomeric chromatin, with findings showing that lower levels of Ring1b decrease the cell's ability to effectively repair damaged telomeres.
View Article and Find Full Text PDF

RING (Really Interesting New Gene) domain-containing E3 ubiquitin ligases comprise a large family of enzymes that in combination with an E2 ubiquitin-conjugating enzyme, modify target proteins by attaching ubiquitin moieties. A number of RING E3s play an essential role in the cellular response to DNA damage highlighting a crucial contribution for ubiquitin-mediated signaling to the genome surveillance pathway. Among the RING E3s, RNF8 and RNF168 play a critical role in the response to double stranded breaks, one of the most deleterious types of DNA damage.

View Article and Find Full Text PDF

Protein interaction modules coordinate the connections within and the activity of intracellular signaling networks. The Eps15 Homology (EH) module, a protein-protein interaction domain that is a key feature of the EH-network, was originally identified in a few proteins involved in endocytosis and vesicle trafficking, and has subsequently also been implicated in actin reorganization, nuclear shuttling, and DNA repair. Here we report an extensive characterization of the physical connections and of the functional wirings of the EH-network in the nematode.

View Article and Find Full Text PDF

Mammalian telomeres repress DNA-damage activation at natural chromosome ends by recruiting specific inhibitors of the DNA-damage machinery that form a protective complex termed shelterin. Within this complex, TRF2 (also known as TERF2) has a crucial role in end protection through the suppression of ATM activation and the formation of end-to-end chromosome fusions. Here we address the molecular properties of TRF2 that are both necessary and sufficient to protect chromosome ends in mouse embryonic fibroblasts.

View Article and Find Full Text PDF

From crude protein extracts of Pseudomonas putida KT2440, we identified a small protein, TurA, able to bind to DNA fragments bearing the entire Pu promoter sequence of the TOL plasmid. The knock-out inactivation of the turA gene resulted in enhanced transcription initiation from the Pu promoter, initially suggesting a negative regulatory role of TurA on Pu expression. Ectopic expression of TurA both in P.

View Article and Find Full Text PDF