The data describe supplementary materials supporting the research article entitled "Worldwide geographical mapping and optimization of stand-alone and grid-connected hybrid renewable system techno-economic performance across Köppen-Geiger climates" (Mazzeo et al., 2020). Hybrid renewable energy systems are increasingly adopted worldwide as technically and economically effective solutions to achieve energy decarbonization and greenhouse gas reduction targets.
View Article and Find Full Text PDFThis dataset supports the research article "Complete greenhouse dynamic simulation tool to assess the crop thermal well-being and energy needs" [1]. In the agricultural sector, the use of energy can be very intensive [2] and the simulation of solar greenhouses is a very complex work [3]. This dataset provides the results of thermal modeling and dynamic simulation of a solar greenhouse considering simultaneously several thermal phenomena.
View Article and Find Full Text PDFElectric production data of a grid-connected hybrid system are presented. The system consists of a photovoltaic generator, a wind micro-generator in the presence (HPWBS) or absence (HPWS) of an electric storage system. In such a system, the power generated by RES (renewable energy sources) is sent directly to balance the load.
View Article and Find Full Text PDFThis data article relates to a multi-criteria process applied to slab-on-ground floor for buildings in warm climate. The input data of the analysis are the building materials with their thermal properties, sustainability characteristics and supply and installation costs. The multi-criteria analysis has been performed with the software modeFRONTIER.
View Article and Find Full Text PDFSeveral technical combinations have been evaluated in order to design high energy performance buildings for the warm climate. The analysis has been developed in several steps, avoiding the use of HVAC systems. The methodological approach of this study is based on a sequential search technique and it is shown on the paper entitled "Envelope Design Optimization by Thermal Modeling of a Building in a Warm Climate" [1].
View Article and Find Full Text PDF"Efficient Solutions and Cost-Optimal Analysis for Existing School Buildings" (Paolo Maria Congedo, Delia D'Agostino, Cristina Baglivo, Giuliano Tornese, Ilaria Zacà) [1] is the paper that refers to this article. It reports the data related to the establishment of several variants of energy efficient retrofit measures selected for two existing school buildings located in the Mediterranean area. In compliance with the cost-optimal analysis described in the Energy Performance of Buildings Directive and its guidelines (EU, Directive, EU 244,) [2], [3], these data are useful for the integration of renewable energy sources and high performance technical systems for school renovation.
View Article and Find Full Text PDFData are related to the multi-objective optimization process applied to the building materials to obtain high energy-efficient precast walls for cold climate. The methodology has been explained on the paper entitled "High performance precast external walls for cold climate by a multi criteria methodology" (Baglivo and Congedo, 2016) [1]. The modeFRONTIER rel.
View Article and Find Full Text PDFData are related to the numerical simulation performed in the study entitled "CFD modeling to evaluate the thermal performances of window frames in accordance with the ISO 10077" (Malvoni et al., 2016) [1]. The paper focuses on the results from a two-dimensional numerical analysis for ten frame sections suggested by the ISO 10077-2 and performed using GAMBIT 2.
View Article and Find Full Text PDFThis data article contains eleven tables supporting the research article entitled: Cost-Optimal Design For Nearly Zero Energy Office Buildings Located In Warm Climates [1]. The data explain the procedure of minimum energy performance requirements presented by the European Directive (EPBD) [2] to establish several variants of energy efficiency measures with the integration of renewable energy sources in order to reach nZEBs (nearly zero energy buildings) by 2020. This files include the application of comparative methodological framework and give the cost-optimal solutions for non-residential building located in Southern Italy.
View Article and Find Full Text PDFThe data given in the following paper are related to input and output information of the paper entitled Design method of high performance precast external walls for warm climate by multi-objective optimization analysis by Baglivo et al. [1]. Previous studies demonstrate that the superficial mass and the internal areal heat capacity are necessary to reach the best performances for the envelope of the Zero Energy Buildings located in a warm climate [2-4].
View Article and Find Full Text PDFThe data reported in this article refers to input and output information related to the research articles entitled Assessment of cost-optimality and technical solutions in high performance multi-residential buildings in the Mediterranean area by Zacà et al. (Assessment of cost-optimality and technical solutions in high performance multi-residential buildings in the Mediterranean area, in press.) and related to the research article Cost-optimal analysis and technical comparison between standard and high efficient mono residential buildings in a warm climate by Baglivo et al.
View Article and Find Full Text PDF