Publications by authors named "Cristina A T Silva"

Vesicular stomatitis virus (VSV) has been increasingly demonstrated as a promising viral vector platform. As the interest over this modality for vaccine and gene therapy applications increases, the need for intensified processes to produce these vectors emerge. In this study, we develop fed-batch-based operations to intensify the production of a recombinant VSV-based vaccine candidate (rVSV-SARS-CoV-2) in suspension cultures of HEK293 cells.

View Article and Find Full Text PDF

Cell culture-based production of vector-based vaccines and virotherapeutics is of increasing interest. The vectors used not only retain their ability to infect cells but also induce robust immune responses. Using two recombinant vesicular stomatitis virus (rVSV)-based constructs, we performed a proof-of-concept study regarding an integrated closed single-use perfusion system that allows continuous virus harvesting and clarification.

View Article and Find Full Text PDF

Major efforts in the intensification of cell culture-based viral vaccine manufacturing focus on the development of high-cell-density (HCD) processes, often operated in perfusion. While perfusion operations allow for higher viable cell densities and volumetric productivities, the high perfusion rates (PR) normally adopted-typically between 2 and 4 vessel volumes per day (VVD)-dramatically increase media consumption, resulting in a higher burden on the cell retention device and raising challenges for the handling and disposal of high volumes of media. In this study, we explore high inoculum fed-batch (HIFB) and low-PR perfusion operations to intensify a cell culture-based process for influenza virus production while minimizing media consumption.

View Article and Find Full Text PDF

In recent years, the use of adeno-associated viruses (AAVs) as vectors for gene and cell therapy has increased, leading to a rise in the amount of AAV vectors required during pre-clinical and clinical trials. AAV serotype 6 (AAV6) has been found to be efficient in transducing different cell types and has been successfully used in gene and cell therapy protocols. However, the number of vectors required to effectively deliver the transgene to one single cell has been estimated at 10 viral genomes (VG), making large-scale production of AAV6 necessary.

View Article and Find Full Text PDF

New influenza strains are constantly emerging, causing seasonal epidemics and raising concerns to the risk of a new global pandemic. Since vaccination is an effective method to prevent the spread of the disease and reduce its severity, the development of robust bioprocesses for producing pandemic influenza vaccines is exceptionally important. Herein, a membrane chromatography-based downstream processing platform with a demonstrated industrial application potential was established.

View Article and Find Full Text PDF