trying...
8 1 0 1 MCID_676f0871ed9ab2fa250b15c0
35586220
Cristiano Piasecki[author] Piasecki, Cristiano[Full Author Name] piasecki, cristiano[Author]
trying2... trying...
35586220 2023 11 02 1664-462X 13 2022 Frontiers in plant science Front Plant Sci The Genetic Architecture of Nitrogen Use Efficiency in Switchgrass (Panicum virgatum L.). 893610 893610 893610 10.3389/fpls.2022.893610 Switchgrass (Panicum virgatum L.) has immense potential as a bioenergy crop with the aim of producing biofuel as an end goal. Nitrogen (N)-related sustainability traits, such as nitrogen use efficiency (NUE) and nitrogen remobilization efficiency (NRE), are important factors affecting switchgrass quality and productivity. Hence, it is imperative to develop nitrogen use-efficient switchgrass accessions by exploring the genetic basis of NUE in switchgrass. For that, we used 331 diverse field-grown switchgrass accessions planted under low and moderate N fertility treatments. We performed a genome wide association study (GWAS) in a holistic manner where we not only considered NUE as a single trait but also used its related phenotypic traits, such as total dry biomass at low N and moderate N, and nitrogen use index, such as NRE. We have evaluated the phenotypic characterization of the NUE and the related traits, highlighted their relationship using correlation analysis, and identified the top ten nitrogen use-efficient switchgrass accessions. Our GWAS analysis identified 19 unique single nucleotide polymorphisms (SNPs) and 32 candidate genes. Two promising GWAS candidate genes, caffeoyl-CoA O-methyltransferase (CCoAOMT ) and alfin-like 6 (AL6 ), were further supported by linkage disequilibrium (LD) analysis. Finally, we discussed the potential role of nitrogen in modulating the expression of these two genes. Our findings have opened avenues for the development of improved nitrogen use-efficient switchgrass lines. Copyright © 2022 Shrestha, Chhetri, Kainer, Xu, Hamilton, Piasecki, Wolfe, Wang, Saha, Jacobson, Millwood, Mazarei and Stewart. Shrestha Vivek V Department of Plant Sciences, The University of Tennessee, Knoxville, Knoxville, TN, United States. Center for Bioenergy Innovation, Oak Ridge National Laboratory, Oak Ridge, TN, United States. Chhetri Hari B HB Center for Bioenergy Innovation, Oak Ridge National Laboratory, Oak Ridge, TN, United States. Kainer David D Center for Bioenergy Innovation, Oak Ridge National Laboratory, Oak Ridge, TN, United States. Xu Yaping Y Department of Plant Sciences, The University of Tennessee, Knoxville, Knoxville, TN, United States. Center for Bioenergy Innovation, Oak Ridge National Laboratory, Oak Ridge, TN, United States. Hamilton Lance L Department of Plant Sciences, The University of Tennessee, Knoxville, Knoxville, TN, United States. Center for Bioenergy Innovation, Oak Ridge National Laboratory, Oak Ridge, TN, United States. Piasecki Cristiano C ATSI Brazil Pesquisa e Consultoria, Passo Fundo, Brazil. Wolfe Ben B Department of Plant Sciences, The University of Tennessee, Knoxville, Knoxville, TN, United States. Center for Bioenergy Innovation, Oak Ridge National Laboratory, Oak Ridge, TN, United States. Wang Xueyan X Center for Bioenergy Innovation, Oak Ridge National Laboratory, Oak Ridge, TN, United States. Noble Research Institute, Ardmore, OK, United States. Saha Malay M Center for Bioenergy Innovation, Oak Ridge National Laboratory, Oak Ridge, TN, United States. Noble Research Institute, Ardmore, OK, United States. Jacobson Daniel D Center for Bioenergy Innovation, Oak Ridge National Laboratory, Oak Ridge, TN, United States. Millwood Reginald J RJ Department of Plant Sciences, The University of Tennessee, Knoxville, Knoxville, TN, United States. Center for Bioenergy Innovation, Oak Ridge National Laboratory, Oak Ridge, TN, United States. Mazarei Mitra M Department of Plant Sciences, The University of Tennessee, Knoxville, Knoxville, TN, United States. Center for Bioenergy Innovation, Oak Ridge National Laboratory, Oak Ridge, TN, United States. Stewart C Neal CN Jr Department of Plant Sciences, The University of Tennessee, Knoxville, Knoxville, TN, United States. Center for Bioenergy Innovation, Oak Ridge National Laboratory, Oak Ridge, TN, United States. eng Journal Article 2022 05 02 Switzerland Front Plant Sci 101568200 1664-462X accessions genome wide association study nitrogen remobilization efficiency nitrogen use efficiency switchgrass The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest. 2022 3 10 2022 4 1 2022 5 19 2 20 2022 5 20 6 0 2022 5 20 6 1 2022 1 1 epublish 35586220 PMC9108870 10.3389/fpls.2022.893610 Adler P. R., Sanderson M. A., Boateng A. A., Weimer P. J., Jung H.-J. G. (2006). Biomass yield and biofuel quality of switchgrass harvested in fall or spring. Agron J. 98 1518–1525. 10.2134/agronj2005.0351 10.2134/agronj2005.0351 Ball Coelho B., Roy R., Bruin A. (2006). Nitrogen recovery and partitioning with different rates and methods of sidedressed manure. Soil Sci. Soc. Am. J. 70 464–473. 10.2136/sssaj2005.0122 10.2136/sssaj2005.0122 Byrnes B. (1990). Environmental effects of N fertilizer use—An overview. Fertil. Res. 26 209–215. 10.1007/BF01048758 10.1007/BF01048758 Camargo E. L. O., Nascimento L. C., Soler M., Salazar M. M., Lepikson-Neto J., Marques W. L., et al. (2014). Contrasting nitrogen fertilization treatments impact xylem gene expression and secondary cell wall lignification in Eucalyptus. BMC Plant Biol. 14:256. 10.1186/s12870-014-0256-9 10.1186/s12870-014-0256-9 PMC4189757 25260963 Chandrika N. N. P., Sundaravelpandian K., Yu S. M., Schmidt W. (2013). Alfin-Like 6 is involved in root hair elongation during phosphate deficiency in Arabidopsis. New Phytol. 198 709–720. 10.1111/nph.12194 10.1111/nph.12194 23432399 Chang C. C., Chow C. C., Tellier L. C., Vattikuti S., Purcell S. M., Lee J. J. (2015). Second-generation PLINK: rising to the challenge of larger and richer datasets. Gigascience 4:7. 10.1186/s13742-015-0047-8 10.1186/s13742-015-0047-8 PMC4342193 25722852 Chien S. H., Teixeira L. A., Cantarella H., Rehm G. W., Grant C. A., Gearhart M. M. (2016). Agronomic effectiveness of granular nitrogen/phosphorus fertilizers containing elemental sulfur with and without ammonium sulfate: a review. Agron J. 108 1203–1213. 10.2134/agronj2015.0276 10.2134/agronj2015.0276 Congreves K. A., Otchere O., Ferland D., Farzadfar S., Williams S., Arcand M. M. (2021). Nitrogen use efficiency definitions of today and tomorrow. Front. Plant Sci. 12:637108. 10.3389/fpls.2021.637108 10.3389/fpls.2021.637108 PMC8220819 34177975 Cormier F., Le Gouis J., Dubreuil P., Lafarge S., Praud S. (2014). A genome-wide identification of chromosomal regions determining nitrogen use efficiency components in wheat (Triticum aestivum L.). Theor. Appl. Genet. 127 2679–2693. 10.1007/s00122-014-2407-7 10.1007/s00122-014-2407-7 25326179 Dobermann A. (2007). “Nutrient use efficiency–measurement and management,” in General Principles of FBMPs, IFA International Workshop on Fertilizer Best Management Practices, ed. IFA (Paris: International Fertilizer Industry Association(IFA)), 1–30. Doerge R. W. (2002). Multifactorial genetics: mapping and analysis of quantitative trait loci in experimental populations. Nat. Rev. Genet. 3:43. 10.1038/nrg703 10.1038/nrg703 11823790 Dohleman F. G., Heaton E. A., Arundale R. A., Long S. P. (2012). Seasonal dynamics of above-and below-ground biomass and nitrogen partitioning in M iscanthus× giganteus and P anicum virgatum across three growing seasons. GCB Bioenergy 4 534–544. 10.1111/j.1757-1707.2011.01153.x 10.1111/j.1757-1707.2011.01153.x Ernst O. R., Kemanian A. R., Mazzilli S., Siri-Prieto G., Dogliotti S. (2020). The dos and don’ts of no-till continuous cropping: evidence from wheat yield and nitrogen use efficiency. Field Crops Res. 257:107934. 10.1016/j.fcr.2020.107934 10.1016/j.fcr.2020.107934 Fike J. H., Pease J. W., Owens V. N., Farris R. L., Hansen J. L., Heaton E. A., et al. (2017). Switchgrass nitrogen response and estimated production costs on diverse sites. GCB Bioenergy 9 1526–1542. 10.1111/gcbb.12444 10.1111/gcbb.12444 Fixen P., Brentrup F., Bruulsema T., Garcia F., Norton R., Zingore S. (2015). “Nutrient/fertilizer use efficiency: measurement, current situation and trends,” in Managing Water and Fertilizer for Sustainable Agricultural Intensification, eds Drechsel P., Heffer P., Magen H., Mikkelsen R., Wichelns D. (Paris: International Fertilizer Industry Association (IFA)), 270. Foehse D., Jungk A. (1983). Influence of phosphate and nitrate supply on root hair formation of rape, spinach and tomato plants. Plant Soil 74 359–368. 10.1007/BF02181353 10.1007/BF02181353 Gaudin A. C., Mcclymont S. A., Holmes B. M., Lyons E., Raizada M. N. (2011). Novel temporal, fine-scale and growth variation phenotypes in roots of adult-stage maize (Zea mays L.) in response to low nitrogen stress. Plant Cell Environ. 34 2122–2137. 10.1111/j.1365-3040.2011.02409.x 10.1111/j.1365-3040.2011.02409.x 21848860 Glass A. D., Britto D. T., Kaiser B. N., Kinghorn J. R., Kronzucker H. J., Kumar A., et al. (2002). The regulation of nitrate and ammonium transport systems in plants. J. Exp. Bot. 53 855–864. 10.1093/jexbot/53.370.855 10.1093/jexbot/53.370.855 11912228 Goel P., Sharma N. K., Bhuria M., Sharma V., Chauhan R., Pathania S., et al. (2018). Transcriptome and co-expression network analyses identify key genes regulating nitrogen use efficiency in Brassica juncea L. Sci. Rep. 8:7451. 10.1038/s41598-018-25826-6 10.1038/s41598-018-25826-6 PMC5945678 29748645 Good A. G., Shrawat A. K., Muench D. G. (2004). Can less yield more? Is reducing nutrient input into the environment compatible with maintaining crop production? Trends Plant Sci. 9 597–605. 10.1016/j.tplants.2004.10.008 10.1016/j.tplants.2004.10.008 15564127 Guo D., Chen F., Inoue K., Blount J. W., Dixon R. A. (2001). Downregulation of caffeic acid 3-O-methyltransferase and caffeoyl CoA 3-O-methyltransferase in transgenic alfalfa: impacts on lignin structure and implications for the biosynthesis of G and S lignin. Plant Cell 13 73–88. 10.1105/tpc.13.1.73 10.1105/tpc.13.1.73 PMC102215 11158530 Gupta N., Gupta M., Akhatar J., Goyal A., Kaur R., Sharma S., et al. (2021). Association genetics of the parameters related to nitrogen use efficiency in Brassica juncea L. Plant Mol. Biol. 105 161–175. 10.1007/s11103-020-01076-x 10.1007/s11103-020-01076-x 32997301 Han M., Okamoto M., Beatty P. H., Rothstein S. J., Good A. G. (2015). The genetics of nitrogen use efficiency in crop plants. Annu. Rev. Genet. 49 269–289. 10.1146/annurev-genet-112414-055037 10.1146/annurev-genet-112414-055037 26421509 He K., Xu S., Zhang X., Li Y., Chang L., Wang Y., et al. (2020). Mining of candidate genes for nitrogen use efficiency in maize based on genome-wide association study. Mol. Breeding 40:83. 10.1007/s11032-020-01163-3 10.1007/s11032-020-01163-3 Hitz K., Clark A. J., Van Sanford D. A. (2017). Identifying nitrogen-use efficient soft red winter wheat lines in high and low nitrogen environments. Field Crops Res. 200 1–9. 10.1371/journal.pone.0228775 10.1371/journal.pone.0228775 PMC7039505 32092066 Holland J. B., Nyquist W. E., Cervantes-Martínez C. T. (2003). Estimating and interpreting heritability for plant breeding: an update. Plant Breed. Rev. 22 9–112 10.1002/9780470650202.ch2 10.1002/9780470650202.ch2 Huang S., Zhao C., Zhang Y., Wang C. (2017). “Nitrogen use efficiency in rice,” in Nitrogen in Agriculture-Updates, eds Amanullah K., Fahad S. (London: IntechOpen; ), 188–208. Jensen L., Schjoerring J. (2011). “Benefits of nitrogen for food, fibre and industrial production,” in The European Nitrogen Assessment, eds Sutton M. A., Howard C. M., Erisman J. W. (Cambridge: Cambridge University Press; ), 32–61. 10.1017/cbo9780511976988.006 10.1017/cbo9780511976988.006 Karunarathne S. D., Han Y., Zhang X.-Q., Zhou G., Hill C. B., Chen K., et al. (2020). Genome-wide association study and identification of candidate genes for nitrogen use efficiency in barley (Hordeum vulgare L.). Front. Plant Sci. 11:1361. 10.3389/fpls.2020.571912 10.3389/fpls.2020.571912 PMC7500209 33013994 Ladha J. K., Pathak H., Krupnik T. J., Six J., van Kessel C. (2005). Efficiency of fertilizer nitrogen in cereal production: retrospects and prospects. Adv. Agron. 87 85–156. 10.1016/S0065-2113(05)87003-8 10.1016/S0065-2113(05)87003-8 Lam H. M., Coschigano K., Oliveira I., Melo-Oliveira R., Coruzzi G. (1996). The molecular-genetics of nitrogen assimilation into amino acids in higher plants. Annu. Rev. Plant Biol. 47 569–593. 10.1146/annurev.arplant.47.1.569 10.1146/annurev.arplant.47.1.569 15012301 Lander E. S., Schork N. J. (1994). Genetic dissection of complex traits. Science 265 2037–2048. 10.1126/science.8091226 10.1126/science.8091226 8091226 Langholtz M., Davison B. H., Jager H. I., Eaton L., Baskaran L. M., Davis M., et al. (2021). Increased nitrogen use efficiency in crop production can provide economic and environmental benefits. Sci. Total Environ. 758:143602. 10.1016/j.scitotenv.2020.143602 10.1016/j.scitotenv.2020.143602 33234272 Lemus R., Parrish D. J., Abaye O. (2008). Nitrogen-use dynamics in switchgrass grown for biomass. Bioenergy Res. 1 153–162. 10.1007/s12155-008-9014-x 10.1007/s12155-008-9014-x Li F., Piasecki C., Millwood R. J., Wolfe B., Mazarei M., Stewart C. N., Jr. (2020). High-throughput switchgrass phenotyping and biomass modeling by UAV. Front. Plant Sci. 1 10.3389/fpls.2020.574073 10.3389/fpls.2020.574073 PMC7606849 33193511 Li X., Chen W., Zhao Y., Xiang Y., Jiang H., Zhu S., et al. (2013). Downregulation of caffeoyl-CoA O-methyltransferase (CCoAOMT) by RNA interference leads to reduced lignin production in maize straw. Genet. Mol.Biol. 36 540–546. 10.1590/S1415-47572013005000039 10.1590/S1415-47572013005000039 PMC3873186 24385858 Liu S. J., Huang Y. H., He C. J., Cheng F., Zhang Y. W. (2016). Cloning, bioinformatics and transcriptional analysis of caffeoyl-coenzyme A 3-O-methyltransferase in switchgrass under abiotic stress. J. Integr. Agric. 15 636–649. 10.1016/S2095-3119(16)61363-1 10.1016/S2095-3119(16)61363-1 Lovell J. T., MacQueen A. H., Mamidi S., Bonnette J., Jenkins J., Napier J. D., et al. (2021). Genomic mechanisms of climate adaptation in polyploid bioenergy switchgrass. Nature 590 438–444. 10.1038/s41586-020-03127-1 10.1038/s41586-020-03127-1 PMC7886653 33505029 Lu J., Zhao H., Wei J., He Y., Shi C., Wang H., et al. (2004). Lignin reduction in transgenic poplars by expressing antisense CCoAOMT gene. Prog. Nat. Sci. 14 1060–1063. 10.1080/10020070412331344801 10.1080/10020070412331344801 Mackay T. F. (2001). The genetic architecture of quantitative traits. Annu. Rev. Genet. 35 303–339. 10.1146/annurev.genet.35.102401.090633 10.1146/annurev.genet.35.102401.090633 11700286 Meyermans H., Morreel K., Lapierre C., Pollet B., De Bruyn A., Busson R., et al. (2000). Modifications in lignin and accumulation of phenolic glucosides in poplar xylem upon down-regulation of caffeoyl-coenzyme A O-methyltransferase, an enzyme involved in lignin biosynthesis. J. Biol. Chem. 275 36899–36909. 10.1074/jbc.M006915200 10.1074/jbc.M006915200 10934215 Morosini J. S., de Freitas Mendonça L., Lyra D. H., Galli G., Vidotti M. S., Fritsche-Neto R. (2017). Association mapping for traits related to nitrogen use efficiency in tropical maize lines under field conditions. Plant Soil 421 453–463. 10.1007/s11104-017-3479-3 10.1007/s11104-017-3479-3 o Di Nasso N. N., Roncucci N., Bonari E. (2013). Seasonal dynamics of aboveground and belowground biomass and nutrient accumulation and remobilization in giant reed (Arundo donax L.): a three-year study on marginal land. Bioenergy Res. 6 725–736. 10.1007/s12155-012-9289-9 10.1007/s12155-012-9289-9 Pathak R. R., Ahmad A., Lochab S., Raghuram N. (2008). Molecular physiology of plant nitrogen use efficiency and biotechnological options for its enhancement. Curr. Sci. 94 1394–1403. Ranjan R., Yadav R. (2019). Targeting nitrogen use efficiency for sustained production of cereal crops. J. Plant Nutr. 42 1086–1113. 10.1080/01904167.2019.1589497 10.1080/01904167.2019.1589497 Reynolds J., Walker C., Kirchner M. (2000). Nitrogen removal in switchgrass biomass under two harvest systems. Biomass Bioenergy 19 281–286. 10.1016/S0961-9534(00)00042-8 10.1016/S0961-9534(00)00042-8 Sadeghpour A., Gorlitsky L., Hashemi M., Weis S., Herbert S. (2014). Response of switchgrass yield and quality to harvest season and nitrogen fertilizer. Agron. J. 106 290–296. 10.2134/agronj2013.0183 10.2134/agronj2013.0183 Sanderson M., Reed R., McLaughlin S., Wullschleger S., Conger B., Parrish D., et al. (1996). Switchgrass as a sustainable bioenergy crop. Bioresour. Technol. 56 83–93. 10.1016/0960-8524(95)00176-X 10.1016/0960-8524(95)00176-X Shen H., Mazarei M., Hisano H., Escamilla-Trevino L., Fu C., Pu Y., et al. (2013). A genomics approach to deciphering lignin biosynthesis in switchgrass. Plant Cell 25 4342–4361. 10.1105/tpc.113.118828 10.1105/tpc.113.118828 PMC3875722 24285795 Shim H., Chasman D. I., Smith J. D., Mora S., Ridker P. M., Nickerson D. A., et al. (2015). A multivariate genome-wide association analysis of 10 LDL subfractions, and their response to statin treatment, in 1868 Caucasians. PLoS One 10:e0120758. 10.1371/journal.pone.0120758 10.1371/journal.pone.0120758 PMC4405269 25898129 Strullu L., Cadoux S., Preudhomme M., Jeuffroy M.-H., Beaudoin N. (2011). Biomass production and nitrogen accumulation and remobilisation by Miscanthus× giganteus as influenced by nitrogen stocks in belowground organs. Field Crops Res. 121 381–391. 10.1016/j.fcr.2011.01.005 10.1016/j.fcr.2011.01.005 Van L. L. (2007). Evaluation of different nitrogen use efficiency indices using field-grown green bell peppers (Capsicum annuum L.). Can. J. Plant Sci. 87 565–569. 10.4141/P06-116 10.4141/P06-116 Wagner A., Tobimatsu Y., Phillips L., Flint H., Torr K., Donaldson L., et al. (2011). CCoAOMT suppression modifies lignin composition in Pinus radiata. Plant J. 67 119–129. 10.1111/j.1365-313X.2011.04580.x 10.1111/j.1365-313X.2011.04580.x 21426426 Wang W., Hu B., Yuan D., Liu Y., Che R., Hu Y., et al. (2018). Expression of the nitrate transporter gene OsNRT1. 1A/OsNPF6. 3 confers high yield and early maturation in rice. Plant Cell 30 638–651. 10.1105/tpc.17.00809 10.1105/tpc.17.00809 PMC5894839 29475937 Wen W., Li D., Li X., Gao Y., Li W., Li H., et al. (2014). Metabolome-based genome-wide association study of maize kernel leads to novel biochemical insights. Nat. Commun. 5:3438. 10.1038/ncomms4438 10.1038/ncomms4438 PMC3959190 24633423 Wolf D. D., Fiske D. A. (2009). Planting and Managing Switchgrass for Forage, Wildlife, and Conservation. Virginia Cooperative Extension, 418-013. Blacksburg, VA: Virginia Polytechnic Institute and State University. Wu X., Feng H., Wu D., Yan S., Zhang P., Wang W., et al. (2021). Using high-throughput multiple optical phenotyping to decipher the genetic architecture of maize drought tolerance. Genome Biol. 22:185. 10.1186/s13059-021-02377-0 10.1186/s13059-021-02377-0 PMC8223302 34162419 Xin W., Wang J., Li J., Zhao H., Liu H., Zheng H., et al. (2021). Candidate gene analysis for nitrogen absorption and utilization in japonica rice at the seedling stage based on a genome-wide association study. Front. Plant Sci. 12:670861. 10.3389/fpls.2021.670861 10.3389/fpls.2021.670861 PMC8212024 34149769 Xu Y., Shrestha V., Piasecki C., Wolfe B., Hamilton L., Millwood R. J., et al. (2021). Sustainability trait modeling of field-grown switchgrass (Panicum virgatum) using UAV-based imagery. Plants 10:2726. 10.3390/plants10122726 10.3390/plants10122726 PMC8709265 34961199 Yang J., Lee S. H., Goddard M. E., Visscher P. M. (2011). GCTA: a tool for genome-wide complex trait analysis. Am. J. Hum. Genet. 88 76–82. 10.1016/j.ajhg.2010.11.011 10.1016/j.ajhg.2010.11.011 PMC3014363 21167468 Yang J., Worley E., Ma Q., Li J., Torres-Jerez I., Li G., et al. (2016). Nitrogen remobilization and conservation, and underlying senescence-associated gene expression in the perennial switchgrass Panicum virgatum. New Phytol. 211 75–89. 10.1111/nph.13898 10.1111/nph.13898 PMC6680227 26935010 Yang J., Worley E., Wang M., Lahner B., Salt D. E., Saha M., et al. (2009). Natural variation for nutrient use and remobilization efficiencies in switchgrass. Bioenergy Res. 2 257–266. 10.1007/s12155-009-9055-9 10.1007/s12155-009-9055-9 Zhong R., Morrison W. H., III, Himmelsbach D. S., Poole F. L., Ye Z.-H. (2000). Essential role of caffeoyl coenzyme AO-methyltransferase in lignin biosynthesis in woody poplar plants. Plant Physiol. 124 563–578. 10.1104/pp.124.2.563 10.1104/pp.124.2.563 PMC59163 11027707 Zhu F., Alseekh S., Koper K., Tong H., Nikoloski Z., Naake T., et al. (2021). Genome-wide association of the metabolic shifts underpinning dark-induced senescence in Arabidopsis. Plant Cell 34 557–578. 10.1093/plcell/koab251 10.1093/plcell/koab251 PMC8774053 34623442 34961199 2021 12 31 2223-7747 10 12 2021 Dec 11 Plants (Basel, Switzerland) Plants (Basel) Sustainability Trait Modeling of Field-Grown Switchgrass (Panicum virgatum ) Using UAV-Based Imagery. 2726 10.3390/plants10122726 Unmanned aerial vehicles (UAVs) provide an intermediate scale of spatial and spectral data collection that yields increased accuracy and consistency in data collection for morphological and physiological traits than satellites and expanded flexibility and high-throughput compared to ground-based data collection. In this study, we used UAV-based remote sensing for automated phenotyping of field-grown switchgrass (Panicum virgatum ), a leading bioenergy feedstock. Using vegetation indices calculated from a UAV-based multispectral camera, statistical models were developed for rust disease caused by Puccinia novopanici , leaf chlorophyll, nitrogen, and lignin contents. For the first time, UAV remote sensing technology was used to explore the potentials for multiple traits associated with sustainable production of switchgrass, and one statistical model was developed for each individual trait based on the statistical correlation between vegetation indices and the corresponding trait. Also, for the first time, lignin content was estimated in switchgrass shoots via UAV-based multispectral image analysis and statistical analysis. The UAV-based models were verified by ground-truthing via correlation analysis between the traits measured manually on the ground-based with UAV-based data. The normalized difference red edge (NDRE) vegetation index outperformed the normalized difference vegetation index (NDVI) for rust disease and nitrogen content, while NDVI performed better than NDRE for chlorophyll and lignin content. Overall, linear models were sufficient for rust disease and chlorophyll analysis, but for nitrogen and lignin contents, nonlinear models achieved better results. As the first comprehensive study to model switchgrass sustainability traits from UAV-based remote sensing, these results suggest that this methodology can be utilized for switchgrass high-throughput phenotyping in the field. Xu Yaping Y 0000-0003-1178-2776 Department of Plant Sciences, University of Tennessee, Knoxville, TN 37996, USA. Center for Bioenergy Innovation, Oak Ridge National Laboratory, Oak Ridge, TN 37830, USA. Shrestha Vivek V 0000-0003-1173-2998 Department of Plant Sciences, University of Tennessee, Knoxville, TN 37996, USA. Center for Bioenergy Innovation, Oak Ridge National Laboratory, Oak Ridge, TN 37830, USA. Piasecki Cristiano C 0000-0002-2868-6863 Department of Plant Sciences, University of Tennessee, Knoxville, TN 37996, USA. Center for Bioenergy Innovation, Oak Ridge National Laboratory, Oak Ridge, TN 37830, USA. ATSI Brasil Pesquisa e Consultoria, Passo Fundo 99054-328, RS, Brazil. Wolfe Benjamin B Department of Plant Sciences, University of Tennessee, Knoxville, TN 37996, USA. Center for Bioenergy Innovation, Oak Ridge National Laboratory, Oak Ridge, TN 37830, USA. Hamilton Lance L Department of Plant Sciences, University of Tennessee, Knoxville, TN 37996, USA. Center for Bioenergy Innovation, Oak Ridge National Laboratory, Oak Ridge, TN 37830, USA. Millwood Reginald J RJ 0000-0002-7127-1831 Department of Plant Sciences, University of Tennessee, Knoxville, TN 37996, USA. Center for Bioenergy Innovation, Oak Ridge National Laboratory, Oak Ridge, TN 37830, USA. Mazarei Mitra M 0000-0002-6116-7758 Department of Plant Sciences, University of Tennessee, Knoxville, TN 37996, USA. Center for Bioenergy Innovation, Oak Ridge National Laboratory, Oak Ridge, TN 37830, USA. Stewart Charles Neal CN 0000-0003-3026-9193 Department of Plant Sciences, University of Tennessee, Knoxville, TN 37996, USA. Center for Bioenergy Innovation, Oak Ridge National Laboratory, Oak Ridge, TN 37830, USA. eng DE-AC05-000R22725 US Department of Energy Journal Article 2021 12 11 Switzerland Plants (Basel) 101596181 2223-7747 UAV chlorophyll high throughput modeling lignin nitrogen rust disease sustainability switchgrass The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest. The funders had no role in the design of the study; in the collection, analyses, or interpretation of data; in the writing of the manuscript, or in the decision to publish the results. 2021 11 4 2021 11 29 2021 12 7 2021 12 28 1 9 2021 12 29 6 0 2021 12 29 6 1 2021 12 11 epublish 34961199 PMC8709265 10.3390/plants10122726 plants10122726 Van Wallendael A., Bonnette J., Juenger T.E., Fritschi F.B., Fay P.A., Mitchell R.B., Lloyd-Reilley J., Rouquette F.M., Jr., Bergstrom G.C., Lowry D.B. Geographic variation in the genetic basis of resistance to leaf rust between locally adapted ecotypes of the biofuel crop switchgrass (Panicum virgatum) New Phytol. 2020;227:1696–1708. doi: 10.1111/nph.16555. 10.1111/nph.16555 32202657 Uppalapati S.R., Serba D.D., Ishiga Y., Szabo L.J., Mittal S., Bhandari H.S., Bouton J.H., Mysore K.S., Saha M.C. Characterization of the rust fungus, Puccinia emaculata, and evaluation of genetic variability for rust resistance in switchgrass populations. BioEnergy Res. 2013;6:458–468. doi: 10.1007/s12155-012-9263-6. 10.1007/s12155-012-9263-6 Loomis R.S. On the utility of nitrogen in leaves. Proc. Natl. Acad. Sci. USA. 1997;94:13378–13379. doi: 10.1073/pnas.94.25.13378. 10.1073/pnas.94.25.13378 PMC33785 9391029 Dinh T.H., Watanabe K., Takaragawa H., Nakabaru M., Kawamitsu Y. Photosynthetic response and nitrogen use efficiency of sugarcane under drought stress conditions with different nitrogen application levels. Plant Prod. Sci. 2017;20:412–422. doi: 10.1080/1343943X.2017.1371570. 10.1080/1343943X.2017.1371570 Owens V.N., Viands D.R., Mayton H.S., Fike J.H., Farris R., Heaton E., Bransby D.I., Hong C.O. Nitrogen use in switchgrass grown for bioenergy across the USA. Biomass Bioenergy. 2013;58:286–293. doi: 10.1016/j.biombioe.2013.07.016. 10.1016/j.biombioe.2013.07.016 Lemus R., Brummer C.E., Burras L.C., Moore K.J., Barker M.F., Molstad N.E. Effects of nitrogen fertilization on biomass yield and quality in large fields of established switchgrass in southern Iowa, USA. Biomass Bioenergy. 2008;32:1187–1194. doi: 10.1016/j.biombioe.2008.02.016. 10.1016/j.biombioe.2008.02.016 Madakadze I.C., Stewart K.A., Madakadze R.M., Peterson P.R., Coulman B.E., Smith D.L. Field evaluation of the chlorophyll meter to predict yield and nitrogen concentration of switchgrass. J. Plant Nutr. 1999;22:1001–1010. doi: 10.1080/01904169909365689. 10.1080/01904169909365689 Halter M., Mitchell J., Mann D.G.J., Muthukumar B., Stewart C.N., Jr., Nilsen E.T. Photosynthetic parameters of switchgrass (Panicum virgatum) under low radiation: Influence of stable overexpression of Miscanthus×giganteus PPDK on responses to light and CO2 under warm and cool growing conditions. New Negat Plant Sci. 2015;1–2:23–32. doi: 10.1016/j.neps.2015.08.001. 10.1016/j.neps.2015.08.001 Mauromicale G., Ierna A., Marchese M. Chlorophyll fluorescence and chlorophyll content in field-grown potato as affected by nitrogen supply, genotype, and plant age. Photosynthetica. 2006;44:76. doi: 10.1007/s11099-005-0161-4. 10.1007/s11099-005-0161-4 Yoder B.J., Pettigrew-Crosby R.E. Predicting nitrogen and chlorophyll content and concentrations from reflectance spectra (400–2500 nm) at leaf and canopy scales. Remote Sens. Environ. 1995;53:199–211. doi: 10.1016/0034-4257(95)00135-N. 10.1016/0034-4257(95)00135-N Himmel M.E., Bayer E.A. Lignocellulose conversion to biofuels: Current challenges, global perspectives. Curr. Opin. Biotechnol. 2009;20:316–317. doi: 10.1016/j.copbio.2009.05.005. 10.1016/j.copbio.2009.05.005 19523813 Ragauskas A.J., Beckham G.T., Biddy M.J., Chandra R., Chen F., Davis M.F., Davison B.H., Dixon R.A., Gilna P., Keller M., et al. Lignin valorization: Improving lignin processing in the biorefinery. Science. 2014;344:1246843. doi: 10.1126/science.1246843. 10.1126/science.1246843 24833396 Xu B., Sathitsuksanoh N., Tang Y., Udvardi M.K., Zhang J.Y., Shen Z., Balota M., Harich K., Zhang P.Y., Zhao B. Overexpression of AtLOV1 in switchgrass alters plant architecture, lignin content, and flowering time. PLoS ONE. 2012;7:e47399. doi: 10.1371/journal.pone.0047399. 10.1371/journal.pone.0047399 PMC3530547 23300513 Potgieter A.B., George-Jaeggli B., Chapman S.C., Laws K., Suárez Cadavid L.A., Wixted J., Watson J., Eldridge M., Jordan D.R., Hammer G.L. Multi-spectral imaging from an unmanned aerial vehicle enables the assessment of seasonal leaf area dynamics of sorghum breeding lines. Front Plant Sci. 2017;8:1532. doi: 10.3389/fpls.2017.01532. 10.3389/fpls.2017.01532 PMC5599772 28951735 Shafian S., Rajan N., Schnell R., Bagavathiannan M., Valasek J., Shi Y., Olsenholler J. Unmanned aerial systems-based remote sensing for monitoring sorghum growth and development. PLoS ONE. 2018;13:e0196605. doi: 10.1371/journal.pone.0196605. 10.1371/journal.pone.0196605 PMC5929499 29715311 Li J., Shi Y., Veeranampalayam-Sivakumar A.-N., Schachtman D.P. Elucidating sorghum biomass, nitrogen and chlorophyll contents with spectral and morphological traits derived from unmanned aircraft system. Front Plant Sci. 2018;9:1406. doi: 10.3389/fpls.2018.01406. 10.3389/fpls.2018.01406 PMC6176777 30333843 Simic Milas A., Romanko M., Reil P., Abeysinghe T., Marambe A. The importance of leaf area index in mapping chlorophyll content of corn under different agricultural treatments using UAV images. Int. J. Remote Sens. 2018;39:5415–5431. doi: 10.1080/01431161.2018.1455244. 10.1080/01431161.2018.1455244 Kanning M., Kühling I., Trautz D., Jarmer T. High-resolution UAV-based hyperspectral imagery for LAI and chlorophyll estimations from wheat for yield prediction. Remote Sens. 2018;10:2000. doi: 10.3390/rs10122000. 10.3390/rs10122000 Shendryk Y., Sofonia J., Garrard R., Rist Y., Skocaj D., Thorburn P. Fine-scale prediction of biomass and leaf nitrogen content in sugarcane using UAV LiDAR and multispectral imaging. Int. J. Appl. Earth Obs. Geoinf. 2020;92:102177. doi: 10.1016/j.jag.2020.102177. 10.1016/j.jag.2020.102177 Li S., Ding X., Kuang Q., Ata-UI-Karim S.T., Cheng T., Liu X., Tian Y., Zhu Y., Cao W., Cao Q. Potential of UAV-based active sensing for monitoring rice leaf nitrogen status. Front Plant Sci. 2018;9:1834. doi: 10.3389/fpls.2018.01834. 10.3389/fpls.2018.01834 PMC6302087 30619407 Lu N., Wang W., Zhang Q., Li D., Yao X., Tian Y., Zhu Y., Cao W., Baret F., Liu S., et al. Estimation of nitrogen nutrition status in winter wheat from unmanned aerial vehicle based multi-angular multispectral imagery. Front Plant Sci. 2019;10:1601. doi: 10.3389/fpls.2019.01601. 10.3389/fpls.2019.01601 PMC6915114 31921250 Kefauver S.C., Vicente R., Vergara-Díaz O., Fernandez-Gallego J.A., Kerfal S., Lopez A., Melichar J.P.E., Serret Molins M.D., Araus J.L. Comparative UAV and field phenotyping to assess yield and nitrogen use efficiency in hybrid and conventional barley. Front Plant Sci. 2017;8:1733. doi: 10.3389/fpls.2017.01733. 10.3389/fpls.2017.01733 PMC5641326 29067032 Zaman-Allah M., Vergara O., Araus J.L., Tarekegne A., Magorokosho C., Zarco-Tejada P.J., Hornero A., Albà A.H., Das B., Craufurd P., et al. Unmanned aerial platform-based multi-spectral imaging for field phenotyping of maize. Plant Methods. 2015;11:35. doi: 10.1186/s13007-015-0078-2. 10.1186/s13007-015-0078-2 PMC4477614 26106438 Schirrmann M., Landwehr N., Giebel A., Garz A., Dammer K.H. Early detection of stripe rust in winter wheat using deep residual neural networks. Front Plant Sci. 2021;12:475. doi: 10.3389/fpls.2021.469689. 10.3389/fpls.2021.469689 PMC8042394 33859655 Li F., Piasecki C., Millwood R.J., Wolfe B., Mazarei M., Stewart C.N., Jr. High-Throughput switchgrass phenotyping and biomass modeling by UAV. Front Plant Sci. 2020;11:1532. doi: 10.3389/fpls.2020.574073. 10.3389/fpls.2020.574073 PMC7606849 33193511 Maesano M., Khoury S., Nakhle F., Firrincieli A., Gay A., Tauro F., Harfouche A. UAV-based LiDAR for high-throughput determination of plant height and above-ground biomass of the bioenergy grass Arundo donax. Remote Sens. 2020;12:3464. doi: 10.3390/rs12203464. 10.3390/rs12203464 Chen F., Dixon R.A. Lignin modification improves fermentable sugar yields for biofuel production. Nat. Biotechnol. 2007;25:759–761. doi: 10.1038/nbt1316. 10.1038/nbt1316 17572667 Ponnusamy V.K., Nguyen D.D., Dharmaraja J., Shobana S., Banu J.R., Saratale R.G., Chang S.W., Kumar G. A review on lignin structure, pretreatments, fermentation reactions and biorefinery potential. Bioresour. Technol. 2019;271:462–472. doi: 10.1016/j.biortech.2018.09.070. 10.1016/j.biortech.2018.09.070 30270050 Zhang Y., Naebe M. Lignin: A review on structure, properties, and applications as a light-colored UV absorber. ACS Sustain. Chem. Eng. 2021;9:1427–1442. doi: 10.1021/acssuschemeng.0c06998. 10.1021/acssuschemeng.0c06998 Bohnenkamp D., Behmann J., Mahlein A.K. In-field detection of yellow rust in wheat on the ground canopy and UAV scale. Remote Sens. 2019;11:2495. doi: 10.3390/rs11212495. 10.3390/rs11212495 Su J.Y., Liu C.J., Coombes M., Hu X.P., Wang C.H., Xu X.M., Li Q.D., Guo L., Chen W.H. Wheat yellow rust monitoring by learning from multispectral UAV aerial imagery. Comput. Electron. Agr. 2018;155:157–166. doi: 10.1016/j.compag.2018.10.017. 10.1016/j.compag.2018.10.017 Guo A.T., Huang W.J., Dong Y.Y., Ye H.C., Ma H.Q., Liu B., Wu W.B., Ren Y., Ruan C., Geng Y. Wheat yellow rust detection using UAV-based hyperspectral technology. Remote Sens. 2021;13:123. doi: 10.3390/rs13010123. 10.3390/rs13010123 Lovell J.T., Shakirov E.V., Schwartz S., Lowry D.B., Aspinwall M.J., Taylor S.H., Bonnette J., Palacio-Mejia J.D., Hawkes C.V., Fay P.A., et al. Promises and challenges of eco-physiological genomics in the field: Tests of drought responses in switchgrass. Plant Physiol. 2016;172:734–748. doi: 10.1104/pp.16.00545. 10.1104/pp.16.00545 PMC5047078 27246097 Humbird D., Davis R., Tao L., Kinchin C., Hsu D., Aden A., Schoen P., Lukas J., Olthof B., Worley M., et al. Process Design and Economics for Biochemical Conversion of Lignocellulosic Biomass to Ethanol: Dilute-Acid Pretreatment and Enzymatic Hydrolysis of Corn Stover. National Renewable Energy Lab. (NREL); Golden, CO, USA: 2011. 147p Matsushita B., Yang W., Chen J., Onda Y., Qiu G. Sensitivity of the enhanced vegetation index (EVI) and normalized difference vegetation index (NDVI) to topographic effects: A case study in high-density cypress forest. Sensors. 2007;7:2636–2651. doi: 10.3390/s7112636. 10.3390/s7112636 PMC3965234 28903251 Zhang K., Ge X., Shen P., Li W., Liu X., Cao Q., Zhu Y., Cao W., Tian Y. Predicting rice grain yield based on dynamic changes in vegetation indexes during early to mid-growth stages. Remote Sens. 2019;11:387. doi: 10.3390/rs11040387. 10.3390/rs11040387 Shaver T.M., Khosla R., Westfall D.G. Evaluation of two ground-based active crop canopy sensors in maize: Growth stage, row spacing, and sensor movement speed. Soil Sci. Soc. Am. J. 2010;74:2101–2108. doi: 10.2136/sssaj2009.0421. 10.2136/sssaj2009.0421 Yu J.J., Kim D.W., Lee E.J., Son S.W. Determining the optimal number of ground control points for varying study sites through accuracy evaluation of unmanned aerial system-based 3D point clouds and digital surface models. Drones. 2020;4:49. doi: 10.3390/drones4030049. 10.3390/drones4030049 Oniga V.-E., Breaban A.-I., Statescu F. Determining the optimum number of ground control points for obtaining high precision results based on UAS images. Proceedings. 2018;2:352. doi: 10.3390/ecrs-2-05165. 10.3390/ecrs-2-05165 Park J.W., Yeom D.J. Method for establishing ground control points to realize UAV-based precision digital maps of earthwork sites. J. Asian Archit. Build. 2021;2:352. doi: 10.1080/13467581.2020.1869023. 10.1080/13467581.2020.1869023 Ventura F., Vignudelli M., Letterio T., Gentile S.L., Anconelli S. Remote sensing and UAV vegetation index comparison with on-site FAPAR measurement; Proceedings of the 2019 IEEE International Workshop on Metrology for Agriculture and Forestry (MetroAgriFor); Portici, Italy. 24–26 October 2019; pp. 202–206. Yang S., Bai J., Zhao C., Lou H., Zhang C., Guan Y., Zhang Y., Wang Z., Yu X. The assessment of the changes of biomass and riparian buffer width in the terminal reservoir under the impact of the South-to-North Water Diversion Project in China. Ecol. Indic. 2018;85:932–943. doi: 10.1016/j.ecolind.2017.11.011. 10.1016/j.ecolind.2017.11.011 Possoch M., Bieker S., Hoffmeister D., Bolten A., Schellberg J., Bareth G. Multi-temporal crop surface models combined with the RGB vegetation index from UAV-based images for forage monitoring in grassland. Int. Arch. Photogramm. Remote. Sens. Spat. Inf. Sci. Gott. 2016;XLI-B1:991–998. doi: 10.5194/isprs-archives-XLI-B1-991-2016. 10.5194/isprs-archives-XLI-B1-991-2016 Shen H., Fu C., Xiao X., Ray T., Tang Y., Wang Z., Chen F. Developmental control of lignification in stems of lowland switchgrass variety Alamo and the effects on saccharification efficiency. BioEnergy Res. 2009;2:233–245. doi: 10.1007/s12155-009-9058-6. 10.1007/s12155-009-9058-6 Jiang Q., Fang S., Peng Y., Gong Y., Zhu R., Wu X., Ma Y., Duan B., Liu J. UAV-based biomass estimation for rice-combining spectral, TIN-based structural and meteorological features. Remote Sens. 2019;11:890. doi: 10.3390/rs11070890. 10.3390/rs11070890 Han L., Yang G., Dai H., Xu B., Yang H., Feng H., Li Z., Yang X. Modeling maize above-ground biomass based on machine learning approaches using UAV remote-sensing data. Plant Methods. 2019;15:10. doi: 10.1186/s13007-019-0394-z. 10.1186/s13007-019-0394-z PMC6360736 30740136 Yang M., Hassan M.A., Xu K., Zheng C., Rasheed A., Zhang Y., Jin X., Xia X., Xiao Y., He Z. Assessment of water and nitrogen use efficiencies through UAV-based multispectral phenotyping in winter wheat. Front Plant Sci. 2020;11 doi: 10.3389/fpls.2020.00927. 10.3389/fpls.2020.00927 PMC7333459 32676089 Pourazar H., Samadzadegan F., Javan F.D. Aerial multispectral imagery for plant disease detection: Radiometric calibration necessity assessment. Eur. J. Remote Sens. 2019;52:17–31. doi: 10.1080/22797254.2019.1642143. 10.1080/22797254.2019.1642143 Brodbeck C., Sikora E., Delaney D., Pate G., Johnson J. Using unmanned aircraft systems for early detection of soybean diseases. Adv. Anim. Biosci. 2017;8:802–806. doi: 10.1017/S2040470017001315. 10.1017/S2040470017001315 Fritschi F.B., Ray J.D. Soybean leaf nitrogen, chlorophyll content, and chlorophyll a/b ratio. Photosynthetica. 2007;45:92–98. doi: 10.1007/s11099-007-0014-4. 10.1007/s11099-007-0014-4 Girardin P., Tollenaar M., Muldoon J.F. Effect of temporary N starvation on leaf photosynthetic rate and chlorophyll content of maize. Can. J. Plant Sci. 1985;65:491–500. doi: 10.4141/cjps85-071. 10.4141/cjps85-071 Guretzky J., Biermacher J., Cook B., Kering M., Mosali J. Switchgrass for forage and bioenergy: Harvest and nitrogen rate effects on biomass yields and nutrient composition. Plant Soil. 2010;339:69–81. doi: 10.1007/s11104-010-0376-4. 10.1007/s11104-010-0376-4 Adamec Z., Drápela K. Generalized additive models as an alternative approach to the modeling of the tree height-diameter relationship. J. For. Sci. 2015;61:235–243. doi: 10.17221/14/2015-JFS. 10.17221/14/2015-JFS Baxter H.L., Mazarei M., Fu C., Cheng Q., Turner G.B., Sykes R.W., Windham M.T., Davis M.F., Dixon R.A., Wang Z.-Y., et al. Time course field analysis of COMT-downregulated switchgrass: Lignification, recalcitrance, and rust susceptibility. BioEnergy Res. 2016;9:1087–1100. doi: 10.1007/s12155-016-9751-1. 10.1007/s12155-016-9751-1 Xie C., Yang C. A review on plant high-throughput phenotyping traits using UAV-based sensors. Comput. Electron. Agr. 2020;178:105731. doi: 10.1016/j.compag.2020.105731. 10.1016/j.compag.2020.105731 Ludovisi R., Tauro F., Salvati R., Khoury S., Mugnozza Scarascia G., Harfouche A. UAV-based thermal imaging for high-throughput field phenotyping of black poplar response to drought. Front Plant Sci. 2017;8:1681. doi: 10.3389/fpls.2017.01681. 10.3389/fpls.2017.01681 PMC5623950 29021803 Goggin F.L., Lorence A., Topp C.N. Applying high-throughput phenotyping to plant-insect interactions: Picturing more resistant crops. Curr. Opin. Insect. Sci. 2015;9:69–76. doi: 10.1016/j.cois.2015.03.002. 10.1016/j.cois.2015.03.002 32846711 Moreira F.F., Oliveira H.R., Volenec J.J., Rainey K.M., Brito L.F. Integrating high-throughput phenotyping and statistical genomic methods to genetically improve longitudinal traits in crops. Front Plant Sci. 2020;11:681. doi: 10.3389/fpls.2020.00681. 10.3389/fpls.2020.00681 PMC7264266 32528513 Mir R.R., Reynolds M., Pinto F., Khan M.A., Bhat M.A. High-throughput phenotyping for crop improvement in the genomics era. Plant Sci. 2019;282:60–72. doi: 10.1016/j.plantsci.2019.01.007. 10.1016/j.plantsci.2019.01.007 31003612 Yang G., Liu J., Zhao C., Li Z., Huang Y., Yu H., Xu B., Yang X., Zhu D., Zhang X., et al. Unmanned aerial vehicle remote sensing for field-based crop phenotyping: Current status and perspectives. Front Plant Sci. 2017;30:8–1111. doi: 10.3389/fpls.2017.01111. 10.3389/fpls.2017.01111 PMC5492853 28713402 Chawade A., van Ham J., Blomquist H., Bagge O., Alexandersson E., Ortiz R. High-throughput field-phenotyping tools for plant breeding and precision agriculture. Agronomy. 2019;9:258. doi: 10.3390/agronomy9050258. 10.3390/agronomy9050258 Sharma N., Schneider-Canny R., Chekhovskiy K., Kwon S., Saha M.C. Opportunities for increased nitrogen use efficiency in wheat for forage use. Plants. 2020;9:1738. doi: 10.3390/plants9121738. 10.3390/plants9121738 PMC7764361 33317031 Coupel-Ledru A., Pallas B., Delalande M., Boudon F., Carrié E., Martinez S., Regnard J.-L., Costes E. Multi-scale high-throughput phenotyping of apple architectural and functional traits in orchard reveals genotypic variability under contrasted watering regimes. Hortic. Res. 2019;6:52. doi: 10.1038/s41438-019-0137-3. 10.1038/s41438-019-0137-3 PMC6491481 31044079 Loladze A., Rodrigues F.A., Toledo F., San Vicente F., Gérard B., Boddupalli M.P. Application of remote sensing for phenotyping tar spot complex resistance in maize. Front Plant Sci. 2019;10 doi: 10.3389/fpls.2019.00552. 10.3389/fpls.2019.00552 PMC6503115 31114603 Hastie T.J., Tibshirani R.J. Generalized Additive Models. Routledge; Abingdon, UK: 2017. Estes L.D., Bradley B.A., Beukes H., Hole D.G., Lau M., Oppenheimer M.G., Schulze R., Tadross M.A., Turner W.R. Comparing mechanistic and empirical model projections of crop suitability and productivity: Implications for ecological forecasting. Glob. Ecol. Biogeogr. 2013;22:1007–1018. doi: 10.1111/geb.12034. 10.1111/geb.12034 Austin M.P., Belbin L., Meyers J.A., Doherty M.D., Luoto M. Evaluation of statistical models used for predicting plant species distributions: Role of artificial data and theory. Ecol. Modell. 2006;199:197–216. doi: 10.1016/j.ecolmodel.2006.05.023. 10.1016/j.ecolmodel.2006.05.023 Yee T.W., Mitchell N.D. Generalized additive models in plant ecology. J. Veg. Sci. 1991;2:587–602. doi: 10.2307/3236170. 10.2307/3236170 Tulbure M.G., Wimberly M.C., Boe A., Owens V.N. Climatic and genetic controls of yields of switchgrass, a model bioenergy species. Agric. Ecosyst. Environ. 2012;146:121–129. doi: 10.1016/j.agee.2011.10.017. 10.1016/j.agee.2011.10.017 Tinarwo P., Zewotir T., Nort D. Modelling the effect of eucalyptus genotypes in the pulping process with generalised additive models and fractional polynomial approaches. Wood Res-Slovak. 2017;62:389–404. Wells J.M., Drielak E., Surendra K.C., Kumar Khanal S. Hot water pretreatment of lignocellulosic biomass: Modeling the effects of temperature, enzyme and biomass loadings on sugar yield. Bioresour. Technol. 2020;300:122593. doi: 10.1016/j.biortech.2019.122593. 10.1016/j.biortech.2019.122593 31881517 Solanki H.U., Bhatpuria D., Chauhan P. Applications of generalized additive model (GAM) to satellite-derived variables and fishery data for prediction of fishery resources distributions in the Arabian Sea. Geocarto. Int. 2017;32:30–43. doi: 10.1080/10106049.2015.1120357. 10.1080/10106049.2015.1120357 34681011 2022 02 07 2023 12 13 2073-4425 12 10 2021 Oct 14 Genes Genes (Basel) Novel Candidate Genes Differentially Expressed in Glyphosate-Treated Horseweed (Conyza canadensis ). 1616 10.3390/genes12101616 The evolution of herbicide-resistant weed species is a serious threat for weed control. Therefore, we need an improved understanding of how gene regulation confers herbicide resistance in order to slow the evolution of resistance. The present study analyzed differentially expressed genes after glyphosate treatment on a glyphosate-resistant Tennessee ecotype (TNR) of horseweed (Conyza canadensis ), compared to a susceptible biotype (TNS). A read size of 100.2 M was sequenced on the Illumina platform and subjected to de novo assembly, resulting in 77,072 gene-level contigs, of which 32,493 were uniquely annotated by a BlastX alignment of protein sequence similarity. The most differentially expressed genes were enriched in the gene ontology (GO) term of the transmembrane transport protein. In addition, fifteen upregulated genes were identified in TNR after glyphosate treatment but were not detected in TNS. Ten of these upregulated genes were transmembrane transporter or kinase receptor proteins. Therefore, a combination of changes in gene expression among transmembrane receptor and kinase receptor proteins may be important for endowing non-target-site glyphosate-resistant C. canadensis . Yang Yongil Y 0000-0002-6925-5410 Department of Plant Sciences, University of Tennessee, Knoxville, TN 37996, USA. Center for Agricultural Synthetic Biology, University of Tennessee, Knoxville, TN 37996, USA. Gardner Cory C Program in Bioinformatics and Computational Biology, Saint Louis University, St. Louis, MO 63103, USA. Gupta Pallavi P 0000-0003-0146-239X Program in Bioinformatics and Computational Biology, Saint Louis University, St. Louis, MO 63103, USA. MU Institute for Data Science and Informatics, University of Missouri, Columbia, MO 65211, USA. Peng Yanhui Y Department of Plant Sciences, University of Tennessee, Knoxville, TN 37996, USA. Centers for Disease Control and Prevention, 1600 Clifton Rd., Atlanta, GA 30333, USA. Piasecki Cristiano C 0000-0002-2868-6863 Department of Plant Sciences, University of Tennessee, Knoxville, TN 37996, USA. ATSI Brasil Pesquisa e Consultoria, Passo Fundo 99054-328, RS, Brazil. Millwood Reginald J RJ Department of Plant Sciences, University of Tennessee, Knoxville, TN 37996, USA. Ahn Tae-Hyuk TH 0000-0002-7281-9459 Program in Bioinformatics and Computational Biology, Saint Louis University, St. Louis, MO 63103, USA. Department of Computer Science, Saint Louis University, St. Louis, MO 63103, USA. Stewart C Neal CN Jr 0000-0003-3026-9193 Department of Plant Sciences, University of Tennessee, Knoxville, TN 37996, USA. Center for Agricultural Synthetic Biology, University of Tennessee, Knoxville, TN 37996, USA. eng Journal Article 2021 10 14 Switzerland Genes (Basel) 101551097 2073-4425 0 DNA, Plant 0 Herbicides TE7660XO1C Glycine IM Computational Biology Conyza drug effects genetics DNA, Plant Genes, Plant Glycine analogs & derivatives pharmacology Herbicide Resistance genetics Herbicides pharmacology Sequence Analysis, DNA methods Transcriptome Weed Control methods Glyphosate ABC transporter CYP450 Conyza canadensis differentially expressed gene analysis glyphosate membrane-bound protein kinase non-target-site-based resistance The authors declare no conflict of interest. 2021 8 13 2021 9 20 2021 10 8 2021 10 23 1 6 2021 10 24 6 0 2022 2 8 6 0 2021 10 14 epublish 34681011 PMC8535903 10.3390/genes12101616 genes12101616 Duke S.O. The history and current status of glyphosate. Pest Manag. Sci. 2018;74:1027–1034. doi: 10.1002/ps.4652. 10.1002/ps.4652 28643882 Amrhein N., Deus B., Gehrke P., Steinrucken H.C. The site of the inhibition of the shikimate pathway by glyphosate: II. Interference of glyphosate with chorismate formation in vivo and in vitro. Plant Physiol. 1980;66:830–834. doi: 10.1104/pp.66.5.830. 10.1104/pp.66.5.830 PMC440735 16661535 Steinrucken H.C., Amrhein N. The herbicide glyphosate is a potent inhibitor of 5-enolpyruvyl-shikimic acid-3-phosphate synthase. Biochem. Biophys. Res. Commun. 1980;94:1207–1212. doi: 10.1016/0006-291X(80)90547-1. 10.1016/0006-291X(80)90547-1 7396959 Pratley J., Urwin N., Stanton R., Baines P., Broster J., Cullis K., Schafer D., Bohn J., Krueger R. Resistance to glyphosate in Lolium rigidum. I. Bioevaluation. Weed Sci. 1999;47:405–411. doi: 10.1017/S0043174500091992. 10.1017/S0043174500091992 Heap I., Duke S.O. Overview of glyphosate-resistant weeds worldwide. Pest Manag. Sci. 2018;74:1040–1049. doi: 10.1002/ps.4760. 10.1002/ps.4760 29024306 Wechsler S.J., McFadden J.R., Smith D.J. What do farmers’ weed control decisions imply about glyphosate resistance? Evidence from surveys of US corn fields. Pest Manag. Sci. 2018;74:1143–1154. doi: 10.1002/ps.4598. 10.1002/ps.4598 28444878 Heap I. Global perspective of herbicide-resistant weeds. Pest Manag. Sci. 2014;70:1306–1315. doi: 10.1002/ps.3696. 10.1002/ps.3696 24302673 Sammons R.D., Gaines T.A. Glyphosate resistance: State of knowledge. Pest Manag. Sci. 2014;70:1367–1377. doi: 10.1002/ps.3743. 10.1002/ps.3743 PMC4260172 25180399 Delye C. Unravelling the genetic bases of non-target-site-based resistance (NTSR) to herbicides: A major challenge for weed science in the forthcoming decade. Pest Manag. Sci. 2013;69:176–187. doi: 10.1002/ps.3318. 10.1002/ps.3318 22614948 Bell M.S., Hager A.G., Tranel P.J. Multiple resistance to herbicides from four site-of-action groups in waterhemp (Amaranthus tuberculatus) Weed Sci. 2013;61:460–468. doi: 10.1614/WS-D-12-00166.1. 10.1614/WS-D-12-00166.1 Nandula V.K., Ray J.D., Ribeiro D.N., Pan Z., Reddy K.N. Glyphosate resistance in tall waterhemp (Amaranthus tuberculatus) from Mississippi is due to both altered target-site and nontarget-site mechanisms. Weed Sci. 2013;61:374–383. doi: 10.1614/WS-D-12-00155.1. 10.1614/WS-D-12-00155.1 Moretti M.L., Alarcon-Reverte R., Pearce S., Morran S., Hanson B.D. Transcription of putative tonoplast transporters in response to glyphosate and paraquat stress in Conyza bonariensis and Conyza canadensis and selection of reference genes for qRT-PCR. PLoS ONE. 2017;12:e0180794. doi: 10.1371/journal.pone.0180794. 10.1371/journal.pone.0180794 PMC5507266 28700644 Hereward J.P., Werth J.A., Thornby D.F., Keenan M., Chauhan B.S., Walter G.H. Gene expression in response to glyphosate treatment in fleabane (Conyza bonariensis)—glyphosate death response and candidate resistance genes. Pest Manag. Sci. 2018;74:2346–2355. doi: 10.1002/ps.4804. 10.1002/ps.4804 29193675 Piasecki C., Yang Y., Benemann D.P., Kremer F.S., Galli V., Millwood R.J., Cechin J., Agostinetto D., Maia L.C., Vargas L., et al. Transcriptomic analysis identifies new non-target site glyphosate-resistance genes in Conyza bonariensis. Plants. 2019;8:157. doi: 10.3390/plants8060157. 10.3390/plants8060157 PMC6630842 31181629 Alcantara-de la Cruz R., Rojano-Delgado A.M., Gimenez M.J., Cruz-Hipolito H.E., Dominguez-Valenzuela J.A., Barro F., De Prado R. First resistance mechanisms characterization in glyphosate-resistant Leptochloa virgata. Front. Plant Sci. 2016;7:1742. doi: 10.3389/fpls.2016.01742. 10.3389/fpls.2016.01742 PMC5114308 27917189 Brunharo C.A., Patterson E.L., Carrijo D.R., de Melo M.S., Nicolai M., Gaines T.A., Nissen S.J., Christoffoleti P.J. Confirmation and mechanism of glyphosate resistance in tall windmill grass (Chloris elata) from Brazil. Pest Manag. Sci. 2016;72:1758–1764. doi: 10.1002/ps.4205. 10.1002/ps.4205 26662356 Vila-Aiub M.M., Balbi M.C., Distefano A.J., Fernandez L., Hopp E., Yu Q., Powles S.B. Glyphosate resistance in perennial Sorghum halepense (Johnsongrass), endowed by reduced glyphosate translocation and leaf uptake. Pest Manag. Sci. 2012;68:430–436. doi: 10.1002/ps.2286. 10.1002/ps.2286 21953884 Ge X., d’Avignon D.A., Ackerman J.J., Collavo A., Sattin M., Ostrander E.L., Hall E.L., Sammons R.D., Preston C. Vacuolar glyphosate-sequestration correlates with glyphosate resistance in ryegrass (Lolium spp.) from Australia, South America, and Europe: A 31P NMR investigation. J. Agric. Food Chem. 2012;60:1243–1250. doi: 10.1021/jf203472s. 10.1021/jf203472s 22224711 Ge X., d’Avignon D.A., Ackerman J.J., Sammons R.D. Rapid vacuolar sequestration: The horseweed glyphosate resistance mechanism. Pest Manag. Sci. 2010;66:345–348. doi: 10.1002/ps.1911. 10.1002/ps.1911 PMC3080097 20063320 Ge X., d’Avignon D.A., Ackerman J.J., Sammons R.D. In vivo 31P-nuclear magnetic resonance studies of glyphosate uptake, vacuolar sequestration, and tonoplast pump activity in glyphosate-resistant horseweed. Plant Physiol. 2014;166:1255–1268. doi: 10.1104/pp.114.247197. 10.1104/pp.114.247197 PMC4226384 25185124 Peng Y., Abercrombie L.L., Yuan J.S., Riggins C.W., Sammons R.D., Tranel P.J., Stewart C.N., Jr. Characterization of the horseweed (Conyza canadensis) transcriptome using GS-FLX 454 pyrosequencing and its application for expression analysis of candidate non-target herbicide resistance genes. Pest Manag. Sci. 2010;66:1053–1062. doi: 10.1002/ps.2004. 10.1002/ps.2004 20715018 Tani E., Chachalis D., Travlos I.S., Bilalis D. Environmental conditions influence induction of key ABC-transporter genes affecting glyphosate resistance mechanism in Conyza canadensis. Int. J. Mol. Sci. 2016;17:342. doi: 10.3390/ijms17040342. 10.3390/ijms17040342 PMC4848879 27104532 Laforest M., Martin S.L., Bisaillon K., Soufiane B., Meloche S., Page E. A chromosome-scale draft sequence of the Canada fleabane genome. Pest Manag. Sci. 2020;76:2158–2169. doi: 10.1002/ps.5753. 10.1002/ps.5753 31951071 Peng Y., Lai Z., Lane T., Nageswara-Rao M., Okada M., Jasieniuk M., O’Geen H., Kim R.W., Sammons R.D., Rieseberg L.H., et al. De novo genome assembly of the economically important weed horseweed using integrated data from multiple sequencing platforms. Plant Physiol. 2014;166:1241–1254. doi: 10.1104/pp.114.247668. 10.1104/pp.114.247668 PMC4226366 25209985 Ewels P., Magnusson M., Lundin S., Kaller M. MultiQC: Summarize analysis results for multiple tools and samples in a single report. Bioinformatics. 2016;32:3047–3048. doi: 10.1093/bioinformatics/btw354. 10.1093/bioinformatics/btw354 PMC5039924 27312411 Grabherr M.G., Haas B.J., Yassour M., Levin J.Z., Thompson D.A., Amit I., Adiconis X., Fan L., Raychowdhury R., Zeng Q., et al. Full-length transcriptome assembly from RNA-Seq data without a reference genome. Nat. Biotechnol. 2011;29:644–652. doi: 10.1038/nbt.1883. 10.1038/nbt.1883 PMC3571712 21572440 NCBI Resource Coordinators Database resources of the National Center for Biotechnology. Nucleic Acids Res. 2016;44:D7–D19. doi: 10.1093/nar/gkv1290. 10.1093/nar/gkv1290 PMC4702911 26615191 Langmead B., Salzberg S.L. Fast gapped-read alignment with Bowtie 2. Nat. Methods. 2012;9:357–359. doi: 10.1038/nmeth.1923. 10.1038/nmeth.1923 PMC3322381 22388286 Li B., Dewey C.N. RSEM: Accurate transcript quantification from RNA-Seq data with or without a reference genome. BMC Bioinformatics. 2011;12:323. doi: 10.1186/1471-2105-12-323. 10.1186/1471-2105-12-323 PMC3163565 21816040 RStudio Team . RStudio: Integrated Development for R. RStudio Inc.; Boston, MA, USA: 2020. [(accessed on 28 June 2021)]. Available online: http://www.rsutdio.com/ Robinson M.D., McCarthy D.J., Smyth G.K. EdgeR: A bioconductor package for differential expression analysis of digital gene expression data. Bioinformatics. 2010;26:139–140. doi: 10.1093/bioinformatics/btp616. 10.1093/bioinformatics/btp616 PMC2796818 19910308 Livak K.J., Schmittgen T.D. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-delta delta C(T)) method. Methods. 2001;25:402–408. doi: 10.1006/meth.2001.1262. 10.1006/meth.2001.1262 11846609 Li H. Minimap2: Pairwise alignment for nucleotide sequences. Bioinformatics. 2018;34:3094–3100. doi: 10.1093/bioinformatics/bty191. 10.1093/bioinformatics/bty191 PMC6137996 29750242 Huang D.W., Sherman B.T., Lempicki R.A. Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources. Nat. Protoc. 2009;4:44–57. doi: 10.1038/nprot.2008.211. 10.1038/nprot.2008.211 19131956 Perotti V.E., Larran A.S., Palmieri V.E., Martinatto A.K., Permingeat H.R. Herbicide resistant weeds: A call to integrate conventional agricultural practices, molecular biology knowledge and new technologies. Plant Sci. 2020;290:110255. doi: 10.1016/j.plantsci.2019.110255. 10.1016/j.plantsci.2019.110255 31779903 Duhoux A., Carrere S., Gouzy J., Bonin L., Delye C. RNA-Seq analysis of rye-grass transcriptomic response to an herbicide inhibiting acetolactate-synthase identifies transcripts linked to non-target-site-based resistance. Plant Mol. Biol. 2015;87:473–487. doi: 10.1007/s11103-015-0292-3. 10.1007/s11103-015-0292-3 25636204 Gaines T.A., Lorentz L., Figge A., Herrmann J., Maiwald F., Ott M.C., Han H., Busi R., Yu Q., Powles S.B., et al. RNA-Seq transcriptome analysis to identify genes involved in metabolism-based diclofop resistance in Lolium rigidum. Plant J. 2014;78:865–876. doi: 10.1111/tpj.12514. 10.1111/tpj.12514 24654891 Iwakami S., Uchino A., Kataoka Y., Shibaike H., Watanabe H., Inamura T. Cytochrome P450 genes induced by bispyribac-sodium treatment in a multiple-herbicide-resistant biotype of Echinochloa phyllopogon. Pest Manag. Sci. 2014;70:549–558. doi: 10.1002/ps.3572. 10.1002/ps.3572 23650123 Pan L., Gao H., Xia W., Zhang T., Dong L. Establishing a herbicide-metabolizing enzyme library in Beckmannia syzigachne to identify genes associated with metabolic resistance. J. Exp. Bot. 2016;67:1745–1757. doi: 10.1093/jxb/erv565. 10.1093/jxb/erv565 26739863 Zhao N., Yan Y., Ge L., Zhu B., Liu W., Wang J. Target site mutations and cytochrome P450s confer resistance to fenoxaprop-P-ethyl and mesosulfuron-methyl in Alopecurus aequalis. Pest Manag. Sci. 2019;75:204–214. doi: 10.1002/ps.5089. 10.1002/ps.5089 29808621 Leslie T., Baucom R.S. De novo assembly and annotation of the transcriptome of the agricultural weed Ipomoea purpurea uncovers gene expression changes associated with herbicide resistance. G3 Genes Genomes Genet. 2014;4:2035–2047. doi: 10.1534/g3.114.013508. 10.1534/g3.114.013508 PMC4199709 25155274 Conte S.S., Lloyd A.M. Exploring multiple drug and herbicide resistance in plants-spotlight on transporter proteins. Plant Sci. 2011;180:196–203. doi: 10.1016/j.plantsci.2010.10.015. 10.1016/j.plantsci.2010.10.015 21421361 Tan E., Demosthenis C., Ilias S.T. A glyphosate resistance mechanism in Conyza canadensis involves synchronization of EPSPS and ABC-transporter genes. Plant Mol. Biol. Rep. 2015;33:1721–1730. doi: 10.1007/s11105-015-0868-8. 10.1007/s11105-015-0868-8 Sun Y., Qiao Z., Muchero W., Chen J.G. Lectin receptor-like kinases: The sensor and mediator at the plant cell surface. Front. Plant Sci. 2020;11:596301. doi: 10.3389/fpls.2020.596301. 10.3389/fpls.2020.596301 PMC7758398 33362827 Teixeira M.A., Rajewski A., He J., Castaneda O.G., Litt A., Kaloshian I. Classification and phylogenetic analyses of the Arabidopsis and tomato G-type lectin receptor kinases. BMC Genom. 2018;19:239. doi: 10.1186/s12864-018-4606-0. 10.1186/s12864-018-4606-0 PMC5889549 29625550 Yang Y., Labbe J., Muchero W., Yang X., Jawdy S.S., Kennedy M., Johnson J., Sreedasyam A., Schmutz J., Tuskan G.A., et al. Genome-wide analysis of lectin receptor-like kinases in Populus. BMC Genom. 2016;17:699. doi: 10.1186/s12864-016-3026-2. 10.1186/s12864-016-3026-2 PMC5007699 27580945 Fuchs B., Saikkonen K., Helander M. Glyphosate-modulated biosynthesis driving plant defense and species interactions. Trends Plant Sci. 2021;26:312–323. doi: 10.1016/j.tplants.2020.11.004. 10.1016/j.tplants.2020.11.004 33277187 Bonaventure G. The Nicotiana attenuata Lectin receptor kinase 1 is involved in the perception of insect feeding. Plant Signal. Behav. 2011;6:2060–2063. doi: 10.4161/psb.6.12.18324. 10.4161/psb.6.12.18324 PMC3356243 22105024 Gilardoni P.A., Hettenhausen C., Baldwin I.T., Bonaventure G. Nicotiana attenuata Lectin receptor kinase1 suppresses the insect-mediated inhibition of induced defense responses during Manduca sexta herbivory. Plant Cell. 2011;23:3512–3532. doi: 10.1105/tpc.111.088229. 10.1105/tpc.111.088229 PMC3203443 21926334 Pan L., Yu Q., Wang J., Han H., Mao L., Nyporko A., Maguza A., Fan L., Bai L., Powles S. An ABCC-type transporter endowing glyphosate resistance in plants. Proc. Natl. Acad. Sci. USA. 2021;118:e2100136118. doi: 10.1073/pnas.2100136118. 10.1073/pnas.2100136118 PMC8072331 33846264 34585834 2022 04 13 2022 04 13 1467-7652 20 2 2022 Feb Plant biotechnology journal Plant Biotechnol J Mini-synplastomes for plastid genetic engineering. 360 373 360-373 10.1111/pbi.13717 In the age of synthetic biology, plastid engineering requires a nimble platform to introduce novel synthetic circuits in plants. While effective for integrating relatively small constructs into the plastome, plastid engineering via homologous recombination of transgenes is over 30 years old. Here we show the design-build-test of a novel synthetic genome structure that does not disturb the native plastome: the 'mini-synplastome'. The mini-synplastome was inspired by dinoflagellate plastome organization, which is comprised of numerous minicircles residing in the plastid instead of a single organellar genome molecule. The first mini-synplastome in plants was developed in vitro to meet the following criteria: (i) episomal replication in plastids; (ii) facile cloning; (iii) predictable transgene expression in plastids; (iv) non-integration of vector sequences into the endogenous plastome; and (v) autonomous persistence in the plant over generations in the absence of exogenous selection pressure. Mini-synplastomes are anticipated to revolutionize chloroplast biotechnology, enable facile marker-free plastid engineering, and provide an unparalleled platform for one-step metabolic engineering in plants. © 2021 The Authors. Plant Biotechnology Journal published by Society for Experimental Biology and The Association of Applied Biologists and John Wiley & Sons Ltd. Occhialini Alessandro A Department of Food Science, University of Tennessee, Knoxville, TN, USA. Center for Agricultural Synthetic Biology, University of Tennessee Institute of Agriculture, Knoxville, TN, USA. Pfotenhauer Alexander C AC Department of Food Science, University of Tennessee, Knoxville, TN, USA. Center for Agricultural Synthetic Biology, University of Tennessee Institute of Agriculture, Knoxville, TN, USA. Li Li L Department of Food Science, University of Tennessee, Knoxville, TN, USA. Center for Agricultural Synthetic Biology, University of Tennessee Institute of Agriculture, Knoxville, TN, USA. Harbison Stacee A SA Center for Agricultural Synthetic Biology, University of Tennessee Institute of Agriculture, Knoxville, TN, USA. Department of Plant Sciences, University of Tennessee, Knoxville, TN, USA. Lail Andrew J AJ Center for Agricultural Synthetic Biology, University of Tennessee Institute of Agriculture, Knoxville, TN, USA. Department of Plant Sciences, University of Tennessee, Knoxville, TN, USA. Burris Jason N JN Department of Food Science, University of Tennessee, Knoxville, TN, USA. Center for Agricultural Synthetic Biology, University of Tennessee Institute of Agriculture, Knoxville, TN, USA. Piasecki Cristiano C Department of Plant Sciences, University of Tennessee, Knoxville, TN, USA. Piatek Agnieszka A AA Department of Plant Sciences, University of Tennessee, Knoxville, TN, USA. Daniell Henry H 0000-0003-4485-1176 Department of Basic and Translational Sciences, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA, USA. Stewart C Neal CN Jr 0000-0003-3026-9193 Center for Agricultural Synthetic Biology, University of Tennessee Institute of Agriculture, Knoxville, TN, USA. Department of Plant Sciences, University of Tennessee, Knoxville, TN, USA. Lenaghan Scott C SC 0000-0002-7539-1726 Department of Food Science, University of Tennessee, Knoxville, TN, USA. Center for Agricultural Synthetic Biology, University of Tennessee Institute of Agriculture, Knoxville, TN, USA. eng Journal Article Research Support, Non-U.S. Gov't Research Support, U.S. Gov't, Non-P.H.S. 2021 10 24 England Plant Biotechnol J 101201889 1467-7644 IM Genetic Engineering Metabolic Engineering Plants genetics Plastids genetics Synthetic Biology Transgenes Solanum tuberosum episomal replication homologous recombination plastid engineering plastome small synthetic plastome ‘mini-synplastome’ The authors declare no competing interests. 2021 9 8 2021 5 24 2021 9 25 2021 9 30 6 0 2022 4 14 6 0 2021 9 29 8 59 2021 10 24 ppublish 34585834 PMC8753362 10.1111/pbi.13717 Barbrook, A.C. , Dorrell, R.G. , Burrows, J. , Plenderleith, L.J. , Nisbet, R.E. and Howe, C.J. (2012) Polyuridylylation and processing of transcripts from multiple gene minicircles in chloroplasts of the dinoflagellate Amphidinium carterae . Plant Mol. Biol. 79, 347–357. 22562591 Barbrook, A.C. and Howe, C.J. (2000) Minicircular plastid DNA in the dinoflagellate Amphidinium operculatum . Mol. Gen. Genet. 263, 152–158. 10732684 Carrillo, N. and Bogorad, L. (1988) Chloroplast DNA replication in vitro: site‐specific initiation from preferred templates. Nucleic Acids Res. 16, 5603–5620. PMC336787 2838823 Chan, H.T. , Xiao, Y. , Weldon, W.C. , Oberste, S.M. , Chumakov, K. and Daniell, H. (2016) Cold chain and virus‐free chloroplast‐made booster vaccine to confer immunity against different poliovirus serotypes. Plant Biotechnol. J. 14, 2190–2200. PMC5056803 27155248 Chiu, W.L. and Sears, B.B. (1992) Electron microscopic localization of replication origins in Oenothera chloroplast DNA. Mol. Gen. Genet. 232, 33–39. 1552900 Corneille, S. , Lutz, K. , Svab, Z. and Maliga, P. (2001) Efficient elimination of selectable marker genes from the plastid genome by the CRE‐lox site‐specific recombination system. Plant J. 27, 171–178. 11489194 Daniell, H. , Datta, R. , Varma, S. , Gray, S. and Lee, S.B. (1998) Containment of herbicide resistance through genetic engineering of the chloroplast genome. Nat. Biotechnol. 16, 345–348. PMC5522713 9555724 Daniell, H. , Lee, S.B. , Grevich, J. , Saski, C. , Quesada‐Vargas, T. , Guda, C. , Tomkins, J. et al. (2006) Complete chloroplast genome sequences of Solanum bulbocastanum, Solanum lycopersicum and comparative analyses with other Solanaceae genomes. Theor. Appl. Genet. 112, 1503–1518. 16575560 Daniell, H. , Lin, C.S. , Yu, M. and Chang, W.J. (2016) Chloroplast genomes: diversity, evolution, and applications in genetic engineering. Genome Biol. 17, 134. PMC4918201 27339192 Daniell, H. , Mangu, V. , Yakubov, B. , Park, J. , Habibi, P. , Shi, Y. , Gonnella, P.A. et al. (2020) Investigational new drug enabling angiotensin oral‐delivery studies to attenuate pulmonary hypertension. Biomaterials, 233, 119750. PMC7045910 31931441 Daniell, H. , Rai, V. and Xiao, Y. (2019a) Cold chain and virus‐free oral polio booster vaccine made in lettuce chloroplasts confers protection against all three poliovirus serotypes. Plant Biotechnol. J. 17, 1357–1368. PMC6576100 30575284 Daniell, H. , Ribeiro, T. , Lin, S. , Saha, P. , McMichael, C. , Chowdhary, R. and Agarwal, A. (2019b) Validation of leaf and microbial pectinases: commercial launching of a new platform technology. Plant Biotechnol. J. 17, 1154–1166. PMC6523602 30963657 Daniell, H. , Vivekananda, J. , Nielsen, B.L. , Ye, G.N. , Tewari, K.K. and Sanford, J.C. (1990) Transient foreign gene expression in chloroplasts of cultured tobacco cells after biolistic delivery of chloroplast vectors. Proc. Natl Acad. Sci. USA, 87, 88–92. PMC53205 2404285 Day, A. and Madesis, P. (2007) DNA replication, recombination, and repair in plastids. In Cell and Molecular Biology of Plastids ( Bock, R. , ed), pp. 65–119. Berlin, Heidelberg: Springer, Berlin Heidelberg. De Cosa, B. , Moar, W. , Lee, S.B. , Miller, M. and Daniell, H. (2001) Overexpression of the Bt cry2Aa2 operon in chloroplasts leads to formation of insecticidal crystals. Nat. Biotechnol. 19, 71–74. PMC4560096 11135556 Dufourmantel, N. , Dubald, M. , Matringe, M. , Canard, H. , Garcon, F. , Job, C. , Kay, E. et al. (2007) Generation and characterization of soybean and marker‐free tobacco plastid transformants over‐expressing a bacterial 4‐hydroxyphenylpyruvate dioxygenase which provides strong herbicide tolerance. Plant Biotechnol. J. 5, 118–133. 17207262 Fox, J.L. (2012) First plant‐made biologic approved. Nat. Biotechnol. 30, 472. Gray, B.N. , Ahner, B.A. and Hanson, M.R. (2009) Extensive homologous recombination between introduced and native regulatory plastid DNA elements in transplastomic plants. Transgenic Res. 18, 559–572. 19184502 Guda, C. , Lee, S.B. and Daniell, H. (2000) Stable expression of a biodegradable protein‐based polymer in tobacco chloroplasts. Plant Cell Rep. 19, 257–262. 30754904 Hajdukiewicz, P.T. , Gilbertson, L. and Staub, J.M. (2001) Multiple pathways for Cre/lox‐mediated recombination in plastids. Plant J. 27, 161–170. 11489193 Howe, C.J. , Barbrook, A.C. , Koumandou, V.L. , Nisbet, R.E. , Symington, H.A. and Wightman, T.F. (2003) Evolution of the chloroplast genome. Philos. Trans. R. Soc. Lond. B. Biol. Sci, 358, 99–107. discussion 106–107. PMC1693101 12594920 Howe, C.J. , Nisbet, R.E. and Barbrook, A.C. (2008) The remarkable chloroplast genome of dinoflagellates. J. Exp. Bot. 59, 1035–1045. 18319241 Iamtham, S. and Day, A. (2000) Removal of antibiotic resistance genes from transgenic tobacco plastids. Nat. Biotechnol. 18, 1172–1176. 11062436 Karas, B.J. , Diner, R.E. , Lefebvre, S.C. , McQuaid, J. , Phillips, A.P. , Noddings, C.M. , Brunson, J.K. et al. (2015) Designer diatom episomes delivered by bacterial conjugation. Nat. Commun. 6, 6925. PMC4411287 25897682 Klaus, S.M. , Huang, F.C. , Golds, T.J. and Koop, H.U. (2004) Generation of marker‐free plastid transformants using a transiently cointegrated selection gene. Nat. Biotechnol. 22, 225–229. 14730316 Koressaar, T. and Remm, M. (2007) Enhancements and modifications of primer design program Primer3. Bioinformatics, 23, 1289–1291. 17379693 Kota, M. , Daniell, H. , Varma, S. , Garczynski, S.F. , Gould, F. and Moar, W.J. (1999) Overexpression of the Bacillus thuringiensis (Bt) Cry2Aa2 protein in chloroplasts confers resistance to plants against susceptible and Bt‐resistant insects. Proc. Natl Acad. Sci. USA, 96, 1840–1845. PMC26698 10051556 Koumandou, V.L. and Howe, C.J. (2007) The copy number of chloroplast gene minicircles changes dramatically with growth phase in the dinoflagellate Amphidinium operculatum . Protist, 158, 89–103. 17049921 Krichevsky, A. , Meyers, B. , Vainstein, A. , Maliga, P. and Citovsky, V. (2010) Autoluminescent plants. PLoS One, 5, e15461. PMC2980496 21103397 Krishnan, N.M. and Rao, B.J. (2009) A comparative approach to elucidate chloroplast genome replication. BMC Genom. 10, 237. PMC2695485 19457260 Kumar, S. , Hahn, F.M. , Baidoo, E. , Kahlon, T.S. , Wood, D.F. , McMahan, C.M. , Cornish, K. et al. (2012) Remodeling the isoprenoid pathway in tobacco by expressing the cytoplasmic mevalonate pathway in chloroplasts. Metab. Eng. 14, 19–28. PMC5767336 22123257 Kumari, U. , Singh, R. , Ray, T. , Rana, S. , Saha, P. , Malhotra, K. and Daniell, H. (2019) Validation of leaf enzymes in the detergent and textile industries: launching of a new platform technology. Plant Biotechnol. J. 17, 1167–1182. PMC6523609 30963679 Kunnimalaiyaan, M. and Nielsen, B.L. (1997) Fine mapping of replication origins (oriA and oriB) in Nicotiana tabacum chloroplast DNA. Nucleic Acids Res. 25, 3681–3686. PMC146947 9278490 Kwon, K.C. , Chan, H.T. , León, I.R. , Williams‐Carrier, R. , Barkan, A. and Daniell, H. (2016) Codon optimization to enhance expression yields insights into chloroplast translation. Plant Physiol. 172, 62–77. PMC5074611 27465114 Kwon, K.C. , Sherman, A. , Chang, W.J. , Kamesh, A. , Biswas, M. , Herzog, R.W. and Daniell, H. (2018) Expression and assembly of largest foreign protein in chloroplasts: oral delivery of human FVIII made in lettuce chloroplasts robustly suppresses inhibitor formation in haemophilia A mice. Plant Biotechnol. J. 16, 1148–1160. PMC5936678 29106782 Kwon, K.C. , Verma, D. , Jin, S. , Singh, N.D. and Daniell, H. (2013) Release of proteins from intact chloroplasts induced by reactive oxygen species during biotic and abiotic stress. PLoS One, 8, e67106. PMC3682959 23799142 Lin, M.T. , Occhialini, A. , Andralojc, P.J. , Parry, M.A. and Hanson, M.R. (2014) A faster Rubisco with potential to increase photosynthesis in crops. Nature, 513, 547–550. PMC4176977 25231869 Lu, Y. , Rijzaani, H. , Karcher, D. , Ruf, S. and Bock, R. (2013) Efficient metabolic pathway engineering in transgenic tobacco and tomato plastids with synthetic multigene operons. Proc. Natl Acad. Sci. USA, 110, E623–632. PMC3581966 23382222 Lugo, S.K. , Kunnimalaiyaan, M. , Singh, N.K. and Nielsen, B.L. (2004) Required sequence elements for chloroplast DNA replication activity in vitro and in electroporated chloroplasts. Plant Sci. 166, 151–161. Malhotra, K. , Subramaniyan, M. , Rawat, K. , Kalamuddin, M. , Qureshi, M.I. , Malhotra, P. , Mohmmed, A. et al. (2016) Compartmentalized metabolic engineering for artemisinin biosynthesis and effective malaria treatment by oral delivery of plant cells. Mol. Plant. 9, 1464–1477. PMC5980236 27773616 Martin Avila, E. , Gisby, M.F. and Day, A. (2016) Seamless editing of the chloroplast genome in plants. BMC Plant Biol. 16, 168. PMC4966725 27474038 Meeker, R. , Nielsen, B. and Tewari, K.K. (1988) Localization of replication origins in pea chloroplast DNA. Mol. Cell. Biol. 8, 1216–1223. PMC363266 2835665 Min, S.R. , Davarpanah, S.J. , Jung, S.H. , Park, Y. , Liu, J.R. and Jeong, W.J. (2015a) An episomal vector system for plastid transformation in higher plants. Plant Biotechnol. Rep. 9, 443–449. Min, S.R. , Jung, S.H. , Liu, J.R. and Jeong, W.J. (2015b) The fate of extrachromosomal DNAs in the progeny of plastid‐transformed tobacco plants. Plant Biotechnol. Rep. 9, 431–442. Mühlbauer, S.K. , Lössl, A. , Tzekova, L. , Zou, Z. and Koop, H.U. (2002) Functional analysis of plastid DNA replication origins in tobacco by targeted inactivation. Plant J. 32, 175–184. 12383083 Nielsen, B.L. , Lu, Z. and Tewari, K.K. (1993) Characterization of the pea chloroplast DNA oriA region. Plasmid, 30, 197–211. 8302928 Nielsen, B.L. and Tewari, K.K. (1988) Pea chloroplast topoisomerase I: purification, characterization, and role in replication. Plant Mol. Biol. 11, 3–14. 24272153 Nisbet, R.E. , Koumandou, L. , Barbrook, A.C. and Howe, C.J. (2004) Novel plastid gene minicircles in the dinoflagellate Amphidinium operculatum . Gene, 331, 141–147. 15094200 Norrander, J. , Kempe, T. and Messing, J. (1983) Construction of improved M13 vectors using oligodeoxynucleotide‐directed mutagenesis. Gene, 26, 101–106. 6323249 Occhialini, A. , Lin, M.T. , Andralojc, P.J. , Hanson, M.R. and Parry, M.A. (2016) Transgenic tobacco plants with improved cyanobacterial Rubisco expression but no extra assembly factors grow at near wild‐type rates if provided with elevated CO2 . Plant J. 85, 148–160. PMC4718753 26662726 Occhialini, A. , Pfotenhauer, A.C. , Frazier, T.P. , Li, L. , Harbison, S.A. , Lail, A.J. , Mebane, Z. et al. (2020) Generation, analysis, and transformation of macro‐chloroplast potato (Solanum tuberosum) lines for chloroplast biotechnology. Sci. Rep. 10, 21144. PMC7713401 33273600 Occhialini, A. , Piatek, A.A. , Pfotenhauer, A.C. , Frazier, T.P. , Stewart, C.N. Jr and Lenaghan, S.C. (2019) MoChlo: a versatile modular cloning toolbox for chloroplast biotechnology. Plant Physiol. 179, 943–957. PMC6393787 30679266 Park, J. , Yan, G. , Kwon, K.C. , Liu, M. , Gonnella, P.A. , Yang, S. and Daniell, H. (2020) Oral delivery of novel human IGF‐1 bioencapsulated in lettuce cells promotes musculoskeletal cell proliferation, differentiation and diabetic fracture healing. Biomaterials, 233, 119591. PMC6990632 31870566 Ruf, S. , Karcher, D. and Bock, R. (2007) Determining the transgene containment level provided by chloroplast transformation. Proc. Natl Acad. Sci. USA, 104, 6998–7002. PMC1849964 17420459 Ruhlman, T. , Verma, D. , Samson, N. and Daniell, H. (2010) The role of heterologous chloroplast sequence elements in transgene integration and expression. Plant Physiol. 152, 2088–2104. PMC2850035 20130101 Shinozaki, K. , Ohme, M. , Tanaka, M. , Wakasugi, T. , Hayashida, N. , Matsubayashi, T. , Zaita, N. et al. (1986) The complete nucleotide sequence of the tobacco chloroplast genome: its gene organization and expression. EMBO J. 5, 2043–2049. PMC1167080 16453699 Singh, R. , Ren, Z. , Shi, Y. , Lin, S. , Kwon, K. , Balamurugan, S. , Rai, V. et al. (2021) Affordable oral health care: dental biofilm disruption using chloroplast made enzymes with chewing gum delivery. Plant Biotechnol. J. 19(10), 2113–2125. PMC8486246 34076337 Staub, J.M. and Maliga, P. (1994) Extrachromosomal elements in tobacco plastids. Proc. Natl Acad. Sci. USA, 91, 7468–7472. PMC44422 8052605 Staub, J.M. and Maliga, P. (1995) Marker rescue from the Nicotiana tabacum plastid genome using a plastid/Escherichia coli shuttle vector. Mol. Gen. Genet, 249, 37–42. 8552031 Svab, Z. , Hajdukiewicz, P. and Maliga, P. (1990) Stable transformation of plastids in higher plants. Proc. Natl Acad. Sci. USA, 87, 8526–8530. PMC54989 11607112 Svab, Z. and Maliga, P. (1993) High‐frequency plastid transformation in tobacco by selection for a chimeric aadA gene. Proc. Natl Acad. Sci. USA, 90, 913–917. PMC45780 8381537 Svab, Z. and Maliga, P. (2007) Exceptional transmission of plastids and mitochondria from the transplastomic pollen parent and its impact on transgene containment. Proc. Natl Acad. Sci. USA, 104, 7003–7008. PMC1849963 17420457 Untergasser, A. , Cutcutache, I. , Koressaar, T. , Ye, J. , Faircloth, B.C. , Remm, M. and Rozen, S.G. (2012) Primer3–new capabilities and interfaces. Nucleic Acids Res. 40, e115. PMC3424584 22730293 Valkov, V.T. , Gargano, D. , Manna, C. , Formisano, G. , Dix, P.J. , Gray, J.C. , Scotti, N. et al. (2011) High efficiency plastid transformation in potato and regulation of transgene expression in leaves and tubers by alternative 5' and 3' regulatory sequences. Transgenic Res. 20, 137–151. 20464632 Vickery, B.P. , Vereda, A. , Casale, T.B. , Beyer, K. , du Toit, G. , Hourihane, J.O. , Jones, S.M. et al. (2018) AR101 oral immunotherapy for peanut allergy. N. Engl. J. Med. 379, 1991–2001. 30449234 Waddell, J. , Wang, X.M. and Wu, M. (1984) Electron microscopic localization of the chloroplast DNA replicative origins in Chlamydomonas reinhardii . Nucleic Acids Res. 12, 3843–3856. PMC318794 6328440 Wang, X.M. , Chang, C.H. , Waddell, J. and Wu, M. (1984) Cloning and delimiting one chloroplast DNA replicative origin of Chlamydomonas . Nucleic Acids Res, 2, 3857–3872. PMC318795 6328441 Xiao, Y. and Daniell, H. (2017) Long‐term evaluation of mucosal and systemic immunity and protection conferred by different polio booster vaccines. Vaccine, 35, 5418–5425. PMC5517362 28111147 Zhang, J. , Khan, S.A. , Hasse, C. , Ruf, S. , Heckel, D.G. and Bock, R. (2015) Pest control. Full crop protection from an insect pest by expression of long double‐stranded RNAs in plastids. Science, 347, 991–994. 25722411 33193511 2020 11 17 1664-462X 11 2020 Frontiers in plant science Front Plant Sci High-Throughput Switchgrass Phenotyping and Biomass Modeling by UAV. 574073 574073 574073 10.3389/fpls.2020.574073 Unmanned aerial vehicle (UAV) technology is an emerging powerful approach for high-throughput plant phenotyping field-grown crops. Switchgrass (Panicum virgatum L.) is a lignocellulosic bioenergy crop for which studies on yield, sustainability, and biofuel traits are performed. In this study, we exploited UAV-based imagery (LiDAR and multispectral approaches) to measure plant height, perimeter, and biomass yield in field-grown switchgrass in order to make predictions on bioenergy traits. Manual ground truth measurements validated the automated UAV results. We found UAV-based plant height and perimeter measurements were highly correlated and consistent with the manual measurements (r = 0.93, p < 0.001). Furthermore, we found that phenotyping parameters can significantly improve the natural saturation of the spectral index of the optical image for detecting high-density plantings. Combining plant canopy height (CH) and canopy perimeter (CP) parameters with spectral index (SI), we developed a robust and standardized biomass yield model [biomass = (m × SI) × CP × CH] where the m is an SI-sensitive coefficient linearly varying with the plant phenological changing stage. The biomass yield estimates obtained from this model were strongly correlated with manual measurements (r = 0.90, p < 0.001). Taking together, our results provide insights into the capacity of UAV-based remote sensing for switchgrass high-throughput phenotyping in the field, which will be useful for breeding and cultivar development. Copyright © 2020 Li, Piasecki, Millwood, Wolfe, Mazarei and Stewart. Li Fei F Department of Plant Sciences, University of Tennessee, Knoxville, Knoxville, TN, United States. Center for Bioenergy Innovation, Oak Ridge National Laboratory, Oak Ridge, TN, United States. Piasecki Cristiano C Department of Plant Sciences, University of Tennessee, Knoxville, Knoxville, TN, United States. Center for Bioenergy Innovation, Oak Ridge National Laboratory, Oak Ridge, TN, United States. Millwood Reginald J RJ Department of Plant Sciences, University of Tennessee, Knoxville, Knoxville, TN, United States. Center for Bioenergy Innovation, Oak Ridge National Laboratory, Oak Ridge, TN, United States. Wolfe Benjamin B Department of Plant Sciences, University of Tennessee, Knoxville, Knoxville, TN, United States. Center for Bioenergy Innovation, Oak Ridge National Laboratory, Oak Ridge, TN, United States. Mazarei Mitra M Department of Plant Sciences, University of Tennessee, Knoxville, Knoxville, TN, United States. Center for Bioenergy Innovation, Oak Ridge National Laboratory, Oak Ridge, TN, United States. Stewart C Neal CN Jr Department of Plant Sciences, University of Tennessee, Knoxville, Knoxville, TN, United States. Center for Bioenergy Innovation, Oak Ridge National Laboratory, Oak Ridge, TN, United States. eng Journal Article 2020 10 20 Switzerland Front Plant Sci 101568200 1664-462X LiDAR Nitrogen biomass phenotype spectral index 2020 6 18 2020 9 16 2020 11 16 8 48 2020 11 17 6 0 2020 11 17 6 1 2020 1 1 epublish 33193511 PMC7606849 10.3389/fpls.2020.574073 Adams J. B., Sabol D. E., Kapos V., Almeida Filho R., Roberts D. A., Smith M. O., et al. (1995). Classification of multispectral images based on fractions of endmembers: application to land-cover change in the Brazilian Amazon. Remote Sens. Environ. 52 137–154. 10.1016/0034-4257(94)00098-8 10.1016/0034-4257(94)00098-8 Anjum S. A., Xie X.-Y., Wang L.-C., Saleem M. F., Man C., Lei W. (2011). Morphological, physiological and biochemical responses of plants to drought stress. Afr. J. Agric. Res. 6 2026–2032. 10.5897/AJAR10.027 10.5897/AJAR10.027 Asner G. P., Mascaro J., Muller-Landau H. C., Vieilledent G., Vaudry R., Rasamoelina M., et al. (2012). A universal airborne LiDAR approach for tropical forest carbon mapping. Oecologia 168 1147–1160. 10.1007/s00442-011-2165-z 10.1007/s00442-011-2165-z 22033763 Baret F., Guyot G. (1991). Potentials and limits of vegetation indices for LAI and APAR assessment. Remote Sens. Environ. 35 161–173. 10.1016/0034-4257(91)90009-U 10.1016/0034-4257(91)90009-U Barnes R. F., Miller D. F., Nelson J. C. (1995). Forages: An Introduction to Grassland Agriculture. Ames, IA: Iowa State University Press. Barney J. N., Mann J. J., Kyser G. B., Blumwald E., Van Deynze A., Ditomaso J. M. (2009). Tolerance of switchgrass to extreme soil moisture stress: ecological implications. Plant Sci. 177 724–732. 10.1016/j.plantsci.2009.09.003 10.1016/j.plantsci.2009.09.003 Baxter J., Mazarei M., Labbe N., Kline L. M., Cheng Q., Windham M. T., et al. (2014). Two-year field analysis of reduced recalcitrance transgenic switchgrass. Plant Biotechnol. J. 12 914–924. 10.1111/pbi.12195 10.1111/pbi.12195 24751162 Bendig J., Bolten A., Bennertz S., Broscheit J., Eichfuss S., Bareth G. (2014). Estimating biomass of barley using crop surface models (CSMs) derived from UAV-based RGB imaging. Remote Sens. 6 10395–10412. 10.3390/rs61110395 10.3390/rs61110395 Bendig J., Yu K., Aasen H., Bolten A., Bennertz S., Broscheit J., et al. (2015). Combining UAV-based plant height from crop surface models, visible, and near infrared vegetation indices for biomass monitoring in barley. Int. J. Appl. Earth Obs. Geoinf. 39 79–87. 10.1016/j.jag.2015.02.012 10.1016/j.jag.2015.02.012 Boe A., Casler M. D. (2005). Hierarchical analysis of switchgrass morphology. Crop Sci. 45 2465–2472. 10.2135/cropsci2004.0703 10.2135/cropsci2004.0703 Bolles R. C., Baker H. H., Marimont D. H. (1987). Epipolar-plane image analysis: an approach to determining structure from motion. Int. J. Comput. Vis. 1 7–55. 10.1007/bf00128525 10.1007/bf00128525 Bouton J. H. (2007). Molecular breeding of switchgrass for use as a biofuel crop. Curr. Opin. Genet. Dev. 17 553–558. 10.1016/j.gde.2007.08.012 10.1016/j.gde.2007.08.012 17933511 Broge N. H., Leblanc E. (2001). Comparing prediction power and stability of broadband and hyperspectral vegetation indices for estimation of green leaf area index and canopy chlorophyll density. Remote Sens. Environ. 76 156–172. 10.1016/S0034-4257(00)00197-8 10.1016/S0034-4257(00)00197-8 Casler M. D. (2012). “Switchgrass breeding, genetics, and genomics,” in Switchgrass. Green Energy and Technology, ed. Monti A. (London: Springer; ), 29–53. 10.1007/978-1-4471-2903-5_2 10.1007/978-1-4471-2903-5_2 Cassida K., Muir J., Hussey M., Read J., Venuto B., Ocumpaugh W. (2005). Biomass yield and stand characteristics of switchgrass in south central US environments. Crop Sci. 45 673–681. 10.2135/cropsci2005.0673 10.2135/cropsci2005.0673 Dandois J. P., Ellis E. C. (2013). High spatial resolution three-dimensional mapping of vegetation spectral dynamics using computer vision. Remote Sens. Environ. 136 259–276. 10.1016/j.rse.2013.04.005 10.1016/j.rse.2013.04.005 Emery S. M., Stahlheber K. A., Gross K. L. (2020). Drought minimized nitrogen fertilization effects on bioenergy feedstock quality. Biomass Bioenergy 133:105452 10.1016/j.biombioe.2019.105452 10.1016/j.biombioe.2019.105452 Fernandez M. G. S., Becraft P. W., Yin Y., Lübberstedt T. (2009). From dwarves to giants? Plant height manipulation for biomass yield. Trends Plant Sci. 14 454–461. 10.1016/j.tplants.2009.06.005 10.1016/j.tplants.2009.06.005 19616467 Garrigues S., Allard D., Baret F., Weiss M. (2006). Influence of landscape spatial heterogeneity on the non-linear estimation of leaf area index from moderate spatial resolution remote sensing data. Remote Sens. Environ. 105 286–298. 10.1016/j.rse.2006.07.013 10.1016/j.rse.2006.07.013 Gitelson A. A. (2004). Wide dynamic range vegetation index for remote quantification of biophysical characteristics of vegetation. J. Plant Physiol. 161 165–173. 10.1078/0176-1617-01176 10.1078/0176-1617-01176 15022830 Hansen P., Schjoerring J. (2003). Reflectance measurement of canopy biomass and nitrogen status in wheat crops using normalized difference vegetation indices and partial least squares regression. Remote Sens. Environ. 86 542–553. 10.1016/S0034-4257(03)00131-7 10.1016/S0034-4257(03)00131-7 Hardin C. F., Fu C., Hisano H., Xiao X., Shen H., Stewart C. N., et al. (2013). Standardization of switchgrass sample collection for cell wall and biomass trait analysis. Bioenergy Res. 6 755–762. 10.1007/s12155-012-9292-1 10.1007/s12155-012-9292-1 Huete A., Liu H., Batchily K., Van Leeuwen W. (1997). A comparison of vegetation indices over a global set of TM images for EOS-MODIS. Remote Sens. Environ. 59 440–451. 10.1016/S0034-4257(96)00112-5 10.1016/S0034-4257(96)00112-5 Jakob K., Zhou F., Paterson A. H. (2009). Genetic improvement of C4 grasses as cellulosic biofuel feedstocks. In Vitro Cell. Dev. Biol. Plant 45 291–305. 10.1007/s11627-009-9214-x 10.1007/s11627-009-9214-x James M. R., Robson S. (2014). Mitigating systematic error in topographic models derived from UAV and ground-based image networks. Earth Surf. Process Landf. 39 1413–1420. 10.1002/esp.3609 10.1002/esp.3609 Jimenez-Berni J. A., Deery D. M., Rozas-Larraondo P., Condon A. T. G., Rebetzke G. J., James R. A., et al. (2018). High throughput determination of plant height, ground cover, and above-ground biomass in wheat with LiDAR. Front. Plant Sci. 9:237. 10.3389/fpls.2018.00237 10.3389/fpls.2018.00237 PMC5835033 29535749 Jung J. Y., Lal R. (2011). Impacts of nitrogen fertilization on biomass production of switchgrass (Panicum virgatum L.) and changes in soil organic carbon in Ohio. Geoderma 166 145–152. 10.1016/j.geoderma.2011.07.023 10.1016/j.geoderma.2011.07.023 Lemus R., Brummer E. C., Burras C. L., Moore K. J., Barker M. F., Molstad N. E. (2008). Effects of nitrogen fertilization on biomass yield and quality in large fields of established switchgrass in southern Iowa, USA. Biomass Bioenergy 32 1187–1194. 10.1016/j.biombioe.2008.02.016 10.1016/j.biombioe.2008.02.016 Lewandowski I., Scurlock J. M., Lindvall E., Christou M. (2003). The development and current status of perennial rhizomatous grasses as energy crops in the US and Europe. Biomass Bioenergy 25 335–361. 10.1016/S0961-9534(03)00030-8 10.1016/S0961-9534(03)00030-8 Li F., Chen J., Zeng Y., Wu B., Zhang X. (2018). Renewed estimates of grassland aboveground biomass showing drought impacts. J. Geophys. Res. Biogeosci. 123 138–148. 10.1002/2017JG004255 10.1002/2017JG004255 Li F., Chen W., Zeng Y., Zhao Q., Wu B. (2014). Improving estimates of grassland fractional vegetation cover based on a pixel dichotomy model: a case study in Inner Mongolia, China. Remote Sens. 6 4705–4722. 10.3390/rs6064705 10.3390/rs6064705 Li F., Zeng Y., Luo J., Ma R., Wu B. (2016). Modeling grassland aboveground biomass using a pure vegetation index. Ecol. Indic. 62 279–288. 10.1016/j.ecolind.2015.11.005 10.1016/j.ecolind.2015.11.005 Lim K., Treitz P., Wulder M., St-Onge B., Flood M. (2003). LiDAR remote sensing of forest structure. Prog. Phys. Geogr. 27 88–106. 10.1191/0309133303pp360ra 10.1191/0309133303pp360ra Lowry D. B., Lovell J. T., Zhang L., Bonnette J., Fay P. A., Mitchell R. B., et al. (2019). QTL× environment interactions underlie adaptive divergence in switchgrass across a large latitudinal gradient. Proc. Natl. Acad. Sci. U.S.A. 116 12933–12941. 10.1073/pnas.1821543116 10.1073/pnas.1821543116 PMC6600931 31182579 Lussem U., Bolten A., Menne J., Gnyp M. L., Schellberg J., Bareth G. (2019). Estimating biomass in temperate grassland with high resolution canopy surface models from UAV-based RGB images and vegetation indices. J. Appl. Remote Sens. 13:034525 10.1117/1.JRS.13.034525 10.1117/1.JRS.13.034525 Madec S., Baret F., De Solan B., Thomas S., Dutartre D., Jezequel S., et al. (2017). High-throughput phenotyping of plant height: comparing unmanned aerial vehicles and ground LiDAR estimates. Front. Plant Sci. 8:2002. 10.3389/fpls.2017.02002 10.3389/fpls.2017.02002 PMC5711830 29230229 Mahlein A.-K., Rumpf T., Welke P., Dehne H.-W., Plümer L., Steiner U., et al. (2013). Development of spectral indices for detecting and identifying plant diseases. Remote Sens. Environ. 128 21–30. 10.1016/j.rse.2012.09.019 10.1016/j.rse.2012.09.019 Mallet C., Bretar F. (2009). Full-waveform topographic lidar: state-of-the-art. ISPRS J. Photogramm. Remote Sens. 64 1–16. 10.1016/j.isprsjprs.2008.09.007 10.1016/j.isprsjprs.2008.09.007 Martinez-Reyna J., Vogel K. P. (2002). Incompatibility systems in switchgrass. Crop Sci. 42 1800–1805. 10.2135/cropsci2002.1800 10.2135/cropsci2002.1800 McLaren J. S. (2005). Crop biotechnology provides an opportunity to develop a sustainable future. Trends Biotechnol. 23 339–342. 10.1016/j.tibtech.2005.04.004 10.1016/j.tibtech.2005.04.004 15978317 Monti A., Zegada-Lizarazu W., Zanetti F., Casler M. (2019). Nitrogen fertilization management of switchgrass, miscanthus and giant reed: a review. Adv. Agron. 153 87–119. 10.1016/bs.agron.2018.08.001 10.1016/bs.agron.2018.08.001 Mutanga O., Skidmore A. K. (2004). Narrow band vegetation indices overcome the saturation problem in biomass estimation. Int. J. Remote Sens. 25 3999–4014. 10.1080/01431160310001654923 10.1080/01431160310001654923 Naik S. N., Goud V. V., Rout P. K., Dalai A. K. (2010). Production of first and second generation biofuels: a comprehensive review. Renew. Sust. Energ. Rev. 14 578–597. 10.1016/j.rser.2009.10.003 10.1016/j.rser.2009.10.003 Oliensis J. (2000). A critique of structure-from-motion algorithms. Comput. Vis. Image Underst. 80 172–214. 10.1006/cviu.2000.0869 10.1006/cviu.2000.0869 Pearson R. L., Miller L. D. (1972). Remote Mapping of Standing Crop Biomass for Estimation of the Productivity of the Shortgrass Prairie. Fort Collins, CO: Colorado State University. Popescu S. C., Wynne R. H., Nelson R. F. (2003). Measuring individual tree crown diameter with lidar and assessing its influence on estimating forest volume and biomass. Can. J. Remote Sens. 29 564–577. 10.5589/m03-027 10.5589/m03-027 0 Reitberger J., Krzystek P., Stilla U. (2008). Analysis of full waveform LIDAR data for the classification of deciduous and coniferous trees. Int. J. Remote Sens. 29 1407–1431. 10.1080/01431160701736448 10.1080/01431160701736448 Remondino F., Spera M. G., Nocerino E., Menna F., Nex F. (2014). State of the art in high density image matching. Photogramm. Rec. 29 144–166. 10.1111/phor.12063 10.1111/phor.12063 Rouse J., Haas R., Schell J., Deering D. (1974). Monitoring vegetation systems in the Great Plains with ERTS. NASA Spec. Publ. 351:309. Schmer M. R., Vogel K. P., Mitchell R., Dien B., Jung H., Casler M. (2012). Temporal and spatial variation in switchgrass biomass composition and theoretical ethanol yield. Agron. J. 104 54–64. 10.2134/agronj2011.0195 10.2134/agronj2011.0195 Schmer M. R., Vogel K. P., Mitchell R. B., Perrin R. K. (2008). Net energy of cellulosic ethanol from switchgrass. Proc. Natl. Acad. Sci. U.S.A. 105 464–469. 10.1073/pnas.0704767105 10.1073/pnas.0704767105 PMC2206559 18180449 Shabanov N., Wang Y., Buermann W., Dong J., Hoffman S., Smith G., et al. (2003). Effect of foliage spatial heterogeneity in the MODIS LAI and FPAR algorithm over broadleaf forests. Remote Sens. Environ. 85 410–423. 10.1016/S0034-4257(03)00017-8 10.1016/S0034-4257(03)00017-8 Tillack A., Clasen A., Kleinschmit B., Förster M. (2014). Estimation of the seasonal leaf area index in an alluvial forest using high-resolution satellite-based vegetation indices. Remote Sens. Environ. 141 52–63. 10.1016/j.rse.2013.10.018 10.1016/j.rse.2013.10.018 Tripathi S. C., Sayre K., Kaul J., Narang R. (2003). Growth and morphology of spring wheat (Triticum aestivum L.) culms and their association with lodging: effects of genotypes, N levels and ethephon. Field Crops Res. 84 271–290. 10.1016/S0378-4290(03)00095-9 10.1016/S0378-4290(03)00095-9 Tucker C., Vanpraet C. L., Sharman M., Van Ittersum G. (1985). Satellite remote sensing of total herbaceous biomass production in the Senegalese Sahel: 1980-1984. Remote Sens. Environ. 17 233–249. 10.1016/0034-4257(85)90097-5 10.1016/0034-4257(85)90097-5 Vogel K. P. (2004). “Switchgrass,” in Warm-Season (C4) Grasses ASA-CSSA-SSSA Monograph, eds Moser L. E., Sollenberger L., Burson B. (Madison, WI: Wiley; ), 561–588. 10.2134/agronmonogr45.c16 10.2134/agronmonogr45.c16 Vogel K. P., Dien B. S., Jung H. G., Casler M. D., Masterson S. D., Mitchell R. B. (2011). Quantifying actual and theoretical ethanol yields for switchgrass strains using NIRS analyses. Bioenergy Res. 4 96–110. 10.1007/s12155-010-9104-4 10.1007/s12155-010-9104-4 Walter J. D. C., Edwards J., Mcdonald G., Kuchel H. (2019). Estimating biomass and canopy height with LiDAR for field crop breeding. Front. Plant Sci. 10:1145. 10.3389/fpls.2019.01145 10.3389/fpls.2019.01145 PMC6775483 31611889 32481698 2020 09 28 2223-7747 9 6 2020 May 28 Plants (Basel, Switzerland) Plants (Basel) Transcriptome Analysis Identifies Candidate Target Genes Involved in Glyphosate-Resistance Mechanism in Lolium multiflorum . 685 10.3390/plants9060685 Italian ryegrass (Lolium multiflorum ; LOLMU) is one of the most troublesome weeds in temperate regions in the world. This weed species interfere with wheat, corn, rye, and oat, causing significant crop yield losses. This species has evolved glyphosate resistance, making it difficult to control. The mechanisms of glyphosate resistance are still unknown, and an understanding thereof will favor the development of new strategies of management. The present study is the first transcriptome study in LOLMU using glyphosate-resistant and -sensitive biotypes, aiming to identify and to provide a list of the candidate target genes related to glyphosate resistance mechanism. The transcriptome was assembled de novo , producing 87,433 contigs with an N50 of 740 bp and an average length of 575 bp. There were 92 and 54 up- and down-regulated genes, respectively, in the resistant biotype, while a total of 1683 were differentially expressed in the sensitive biotype in response to glyphosate treatment. We selected 14 highly induced genes and seven with repressed expression in the resistant biotype in response to glyphosate. Of these genes, a significant proportion were related to the plasma membrane, indicating that there is a barrier making it difficult for glyphosate to enter the cell. Cechin Joanei J Department of Crop Protection, Federal University of Pelotas, Pelotas, RS 96160-000, Brazil. Piasecki Cristiano C Department of Crop Protection, Federal University of Pelotas, Pelotas, RS 96160-000, Brazil. Department of Plant Sciences, University of Tennessee, Knoxville, TN 37996, USA. Benemann Daiane P DP Department of Crop Protection, Federal University of Pelotas, Pelotas, RS 96160-000, Brazil. Kremer Frederico S FS Center for Technological Development, Federal University of Pelotas (UFPel), Pelotas, RS 96010-610, Brazil. Galli Vanessa V Center for Technological Development, Federal University of Pelotas (UFPel), Pelotas, RS 96010-610, Brazil. Maia Luciano C LC Department of Plant Breeding, Federal University of Pelotas (UFPel), Pelotas, RS 96010-610, Brazil. Agostinetto Dirceu D Department of Crop Protection, Federal University of Pelotas, Pelotas, RS 96160-000, Brazil. Vargas And Leandro AL Department of Weed Science, Brazilian Agricultural Research Corporation (EMBRAPA), Passo Fundo, RS 99050-970, Brazil. eng 00000 Coordenação de Aperfeiçoamento de Pessoal de Nível Superior 000000 Conselho Nacional de Desenvolvimento Científico e Tecnológico Journal Article 2020 05 28 Switzerland Plants (Basel) 101596181 2223-7747 Italian ryegrass RNA-Seq differential gene expression next-generation sequencing resistance mechanism The authors declare no conflict of interest. 2020 5 2 2020 5 23 2020 5 24 2020 6 3 6 0 2020 6 3 6 0 2020 6 3 6 1 2020 5 28 epublish 32481698 PMC7357135 10.3390/plants9060685 plants9060685 Vargas L., Roman E.S., Rizzardi M.A., Silva V.C. Alteração das características biológicas dos biótipos de azevém (Lolium multiflorum) ocasionada pela resistência ao herbicida glyphosate. Planta Daninha. 2005;23:153–160. doi: 10.1590/S0100-83582005000100018. 10.1590/S0100-83582005000100018 Preston C., Wakelin A.M., Dolman F.C., Bostamam Y., Boutsalis P. A Decade of glyphosate-resistant Lolium around the world: Mechanisms, genes, fitness, and agronomic management. Weed Sci. 2009;57:435–441. doi: 10.1614/WS-08-181.1. 10.1614/WS-08-181.1 Vargas L., Roman E.S. Seletividade e eficiência de herbicidas em cereais de inverno. Rev. Bras. Herbic. 2005;4:1–10. doi: 10.7824/rbh.v4i3.32. 10.7824/rbh.v4i3.32 Nandula V.K. Italian Ryegrass (Lolium perenne ssp. multiflorum) and corn (Zea mays) competition. Am. J. Plant Sci. 2014;5:3914–3924. doi: 10.4236/ajps.2014.526410. 10.4236/ajps.2014.526410 Bond J.A., Eubank T.W., Bond R.C., Golden B.R., Edwards H.M. Glyphosate-resistant Italian ryegrass (Lolium perenne ssp. multiflorum) control with fall-applied residual herbicides. Weed Technol. 2014;28:361–370. doi: 10.1614/WT-D-13-00149.1. 10.1614/WT-D-13-00149.1 Roman E.S., Vargas L., Rizzardi M.A., Mattei R.W. Resistance of Italian ryegrass (Lolium multiflorum) to glyphosate. Planta Daninha. 2004;22:301–306. doi: 10.1590/S0100-83582004000200018. 10.1590/S0100-83582004000200018 Paula J., Agostinetto D., Schaedler C., Vargas L., Silva D.R. Competição de trigo com azevém em função de épocas de aplicação e doses de nitrogênio. Planta Daninha. 2011;29:557–563. doi: 10.1590/S0100-83582011000300009. 10.1590/S0100-83582011000300009 Adegas F., Vargas L., Gazziero D., Karam D., Silva A., Agostinetto D. Impacto econômico da resistência de plantas daninhas a herbicidas no Brasil. EMBRAPA. 2017;132:1–12. Vargas L., Adegas F., Gazziero D., Karam D., Agostinetto D., Silva W. Resistência de plantas daninhas aos herbicidas no Brasil. Histórico, distribuição, impacto econômico, manejo e prevenção. In: Meschede D.K., Gazziero D.L.P., editors. A Era Glyphosate: Agricultura, Meio Ambiente e Homem. Midiograf II; Londrina, Brazil: 2016. pp. 219–239. Yuan J.S., Tranel P.J., Stewart C.N. Non-target-site herbicide resistance: A family business. Trends Plant Sci. 2007;12:6–13. doi: 10.1016/j.tplants.2006.11.001. 10.1016/j.tplants.2006.11.001 17161644 Délye C., Jasieniuk M., Le Corre V. Deciphering the evolution of herbicide resistance in weeds. Trends Genet. 2013;29:649–658. doi: 10.1016/j.tig.2013.06.001. 10.1016/j.tig.2013.06.001 23830583 Salas R.A., Scott R.C., Dayan F.E., Burgos N.R. EPSPS gene amplification in glyphosate-resistant Italian Ryegrass (Lolium perenne ssp. multiflorum) populations from Arkansas (United States) J. Agric. Food Chem. 2015;63:5885–5893. doi: 10.1021/acs.jafc.5b00018. 10.1021/acs.jafc.5b00018 25760654 Sammons R.D., Gaines T.A. Glyphosate resistance: State of knowledge. Pest Manag. Sci. 2014;70:1367–1377. doi: 10.1002/ps.3743. 10.1002/ps.3743 PMC4260172 25180399 Délye C. Unravelling the genetic bases of non-target-site-based resistance (NTSR) to herbicides: A major challenge for weed science in the forthcoming decade. Pest Manag. Sci. 2013;69:176–187. doi: 10.1002/ps.3318. 10.1002/ps.3318 22614948 Unamba C.I.N., Nag A., Sharma R.K. Next generation sequencing technologies: The doorway to the unexplored genomics of non-model plants. Front. Plant Sci. 2015;6:1074. doi: 10.3389/fpls.2015.01074. 10.3389/fpls.2015.01074 PMC4679907 26734016 Martin J.A., Wang Z. Next-generation transcriptome assembly. Nat. Rev. Genet. 2011;12:671–682. doi: 10.1038/nrg3068. 10.1038/nrg3068 21897427 Hereward J.P., Werth J.A., Thornby D.F., Keenan M., Chauhan B.S., Walter G.H. Gene expression in response to glyphosate treatment in fleabane (Conyza bonariensis) - glyphosate death response and candidate resistance genes. Pest Manag. Sci. 2018;74:2346–2355. doi: 10.1002/ps.4804. 10.1002/ps.4804 29193675 Piasecki C., Yang Y., Benemann D.P., Kremer F.S., Galli V., Millwood R.J., Cechin J., Agostinetto D., Maia L.C., Vargas L., et al. Transcriptomic Analysis Identifies New Non-Target Site Glyphosate-Resistance Genes in Conyza bonariensis. Plants. 2019;8:157. doi: 10.3390/plants8060157. 10.3390/plants8060157 PMC6630842 31181629 Duhoux A., Carrère S., Gouzy J., Bonin L., Délye C. RNA-Seq analysis of rye-grass transcriptomic response to an herbicide inhibiting acetolactate-synthase identifies transcripts linked to non-target-site-based resistance. Plant Mol. Biol. 2015;87:473–487. doi: 10.1007/s11103-015-0292-3. 10.1007/s11103-015-0292-3 25636204 Gardin J.A.C., Gouzy J., Carrère S., Délye C. ALOMYbase, a resource to investigate non-target-site-based resistance to herbicides inhibiting acetolactate-synthase (ALS) in the major grass weed Alopecurus myosuroides (black-grass) BMC Genomics. 2015;16:590. doi: 10.1186/s12864-015-1804-x. 10.1186/s12864-015-1804-x PMC4534104 26265378 An J., Shen X., Ma Q., Yang C., Liu S., Chen Y. Transcriptome profiling to discover putative genes associated with paraquat resistance in goosegrass (Eleusine indica L.) PLoS ONE. 2014;9:e99940. doi: 10.1371/journal.pone.0099940. 10.1371/journal.pone.0099940 PMC4057336 24927422 Giacomini D.A., Gaines T., Beffa R., Tranel P.J. Optimizing RNA-seq studies to investigate herbicide resistance. Pest Manag. Sci. 2018;74:2260–2264. doi: 10.1002/ps.4822. 10.1002/ps.4822 29222921 Yuan J.S., Abercrombie L.L.G., Cao Y., Halfhill M.D., Zhou X., Peng Y., Hu J., Rao M.R., Heck G.R., Larosa T.J., et al. Functional genomics analysis of horseweed (Conyza canadensis) with special reference to the evolution of non–target-site glyphosate resistance. Weed Sci. 2010;58:109–117. doi: 10.1614/WS-D-09-00037.1. 10.1614/WS-D-09-00037.1 Délye C., Duhoux A., Pernin F., Riggins C.W., Tranel P.J. Molecular mechanisms of herbicide resistance. Weed Sci. 2015;63:91–115. doi: 10.1614/WS-D-13-00096.1. 10.1614/WS-D-13-00096.1 Peng Y., Lai Z., Lane T., Nageswara-Rao M., Okada M., Jasieniuk M., O’Geen H., Kim R.W., Sammons R.D., Rieseberg L.H., et al. De novo genome assembly of the economically important weed horseweed using integrated data from multiple sequencing platforms. Plant Physiol. 2014;166:1241–1254. doi: 10.1104/pp.114.247668. 10.1104/pp.114.247668 PMC4226366 25209985 Vargas L., Ruchel Q., Agostinetto D., Lamego F.P., Langaro A.C., Piesanti S.R. Verificação do mecanismo de resistência ao glyphosate em biótipos de azevém. Planta Daninha. 2016;34:565–573. doi: 10.1590/s0100-83582016340300017. 10.1590/s0100-83582016340300017 Novaković L., Guo T., Bacic A., Sampathkumar A., Johnson K.L. Hitting the wall—Sensing and signaling pathways involved in plant cell wall remodeling in response to abiotic stress. Plants. 2018;7:89. doi: 10.3390/plants7040089. 10.3390/plants7040089 PMC6313904 30360552 Caverzan A., Piasecki C., Chavarria G., Stewart C., Vargas L. Defenses against ROS in crops and weeds: The effects of interference and herbicides. Int. J. Mol. Sci. 2019;20:1086. doi: 10.3390/ijms20051086. 10.3390/ijms20051086 PMC6429093 30832379 Tzin V., Galili G. New insights into the shikimate and aromatic amino acids biosynthesis pathways in plants. Mol. Plant. 2010;3:956–972. doi: 10.1093/mp/ssq048. 10.1093/mp/ssq048 20817774 Schönbrunn E., Eschenburg S., Shuttleworth W.A., Schloss J.V., Amrhein N., Evans J.N., Kabsch W. Interaction of the herbicide glyphosate with its target enzyme 5-enolpyruvylshikimate 3-phosphate synthase in atomic detail. Proc. Natl. Acad. Sci. USA. 2001;98:1376–1380. doi: 10.1073/pnas.98.4.1376. 10.1073/pnas.98.4.1376 PMC29264 11171958 Nol N., Tsikou D., Eid M., Livieratos I.C., Giannopolitis C.N. Shikimate leaf disc assay for early detection of glyphosate resistance in Conyza canadensis and relative transcript levels of EPSPS and ABC transporter genes. Weed Res. 2012;52:233–241. doi: 10.1111/j.1365-3180.2012.00911.x. 10.1111/j.1365-3180.2012.00911.x Cramer G.R., Urano K., Delrot S., Pezzotti M., Shinozaki K. Effects of abiotic stress on plants: A systems biology perspective. BMC Plant Biol. 2011;11:163. doi: 10.1186/1471-2229-11-163. 10.1186/1471-2229-11-163 PMC3252258 22094046 Cobb A., Reade P. Herbicides and Plant Physiology. 2nd ed. Wiley-Blackwell; Shropshire, UK: 2010. p. 286. Pan L., Yu Q., Han H., Mao L., Nyporko A., Fan L., Bai L., Powles S.B. Aldo-keto reductase metabolizes glyphosate and confers glyphosate resistance in Echinochloa colona. Plant Physiol. 2019;181:1519–1534. doi: 10.1104/pp.19.00979. 10.1104/pp.19.00979 PMC6878027 31551360 Maroli A.S., Nandula V.K., Dayan F.E., Duke S.O., Gerard P., Tharayil N. Metabolic profiling and enzyme analyses indicate a potential role of antioxidant systems in complementing glyphosate resistance in an Amaranthus palmeri biotype. J. Agric. Food Chem. 2015;63:9199–9209. doi: 10.1021/acs.jafc.5b04223. 10.1021/acs.jafc.5b04223 26329798 Powles S.B., Yu Q. Evolution in action: Plants resistant to herbicides. Annu. Rev. Plant Biol. 2010;61:317–347. doi: 10.1146/annurev-arplant-042809-112119. 10.1146/annurev-arplant-042809-112119 20192743 Kreuz K., Tommasini R., Martinoia E. Old enzymes for a new job: Herbicide detoxification in plants. Plant Physiol. 1996;111:349–353. doi: 10.1104/pp.111.2.349. 10.1104/pp.111.2.349 PMC157843 12226292 Bowles D., Lim E.-K., Poppenberger B., Vaistij F.E. Glycosyltransferases of lipophilic small molecules. Annu. Rev. Plant Biol. 2006;57:567–597. doi: 10.1146/annurev.arplant.57.032905.105429. 10.1146/annurev.arplant.57.032905.105429 16669774 Sharma B., Joshi D., Yadav P.K., Gupta A.K., Bhatt T.K. Role of ubiquitin-mediated degradation system in plant biology. Front. Plant Sci. 2016;7:806. doi: 10.3389/fpls.2016.00806. 10.3389/fpls.2016.00806 PMC4897311 27375660 Hu H., Sun S.-C. Ubiquitin signaling in immune responses. Cell Res. 2016;26:457–483. doi: 10.1038/cr.2016.40. 10.1038/cr.2016.40 PMC4822134 27012466 Zulet A., Gil-Monreal M., Villamor J.G., Zabalza A., van der Hoorn R.A.L., Royuela M. Proteolytic pathways induced by herbicides that inhibit amino acid biosynthesis. PLoS ONE. 2013;8:e73847. doi: 10.1371/journal.pone.0073847. 10.1371/journal.pone.0073847 PMC3765261 24040092 Burgos N.R., Tranel P.J., Streibig J.C., Davis V.M., Shaner D., Norsworthy J.K., Ritz C. Review: Confirmation of resistance to herbicides and evaluation of resistance levels. Weed Sci. 2013;61:4–20. doi: 10.1614/WS-D-12-00032.1. 10.1614/WS-D-12-00032.1 Singh B.K., Shaner D.L. Rapid determination of glyphosate injury to plants and identification of glyphosate resistant plants. Weed Sci. Soc. Am. 1998;12:527–530. doi: 10.1017/S0890037X00044250. 10.1017/S0890037X00044250 Perez-Jones A., Park K.W., Polge N., Colquhoun J., Mallory-Smith C.A. Investigating the mechanisms of glyphosate resistance in Lolium multiflorum. Planta. 2007;226:395–404. doi: 10.1007/s00425-007-0490-6. 10.1007/s00425-007-0490-6 17323079 Piasecki C., Carvalho I.R., Cechin J., Goulart F.A.P., da Maia L.C., Agostinetto D., Caverzan A., Stewart C.N., Jr., Vargas L. Oxidative stress and differential antioxidant enzyme activity in glyphosate-resistant and -sensitive hairy fleabane in response to glyphosate treatment. Bragantia. 2019;78:379–396. doi: 10.1590/1678-4499.20180289. 10.1590/1678-4499.20180289 Wingett S.W., Andrews S. FastQ Screen: A tool for multi-genome mapping and quality control. F1000Res. 2018;7:1338. doi: 10.12688/f1000research.15931.2. 10.12688/f1000research.15931.2 PMC6124377 30254741 Bolger A.M., Lohse M., Usadel B. Trimmomatic: A flexible trimmer for Illumina sequence data. Bioinformatics. 2014;30:2114–2120. doi: 10.1093/bioinformatics/btu170. 10.1093/bioinformatics/btu170 PMC4103590 24695404 Grabherr M.G., Haas B.J., Yassour M., Levin J.Z., Thompson D.A., Amit I., Adiconis X., Fan L., Raychowdhury R., Zeng Q., et al. Full-length transcriptome assembly from RNA-Seq data without a reference genome. Nat. Biotechnol. 2011;29:644–652. doi: 10.1038/nbt.1883. 10.1038/nbt.1883 PMC3571712 21572440 Haas B.J., Papanicolaou A., Yassour M., Grabherr M., Blood P.D., Bowden J., Couger M.B., Eccles D., Li B., Lieber M., et al. De novo transcript sequence reconstruction from RNA-seq using the Trinity platform for reference generation and analysis. Nat. Protoc. 2013;8:1494–1512. doi: 10.1038/nprot.2013.084. 10.1038/nprot.2013.084 PMC3875132 23845962 Conesa A., Madrigal P., Tarazona S., Gomez-Cabrero D., Cervera A., McPherson A., Szcześniak M.W., Gaffney D.J., Elo L.L., Zhang X., et al. A survey of best practices for RNA-seq data analysis. Genome Biol. 2016;17:13. doi: 10.1186/s13059-016-0881-8. 10.1186/s13059-016-0881-8 PMC4728800 26813401 Cock P.J.A., Antao T., Chang J.T., Chapman B.A., Cox C.J., Dalke A., Friedberg I., Hamelryck T., Kauff F., Wilczynski B., et al. Biopython: Freely available Python tools for computational molecular biology and bioinformatics. Bioinformatics. 2009;25:1422–1423. doi: 10.1093/bioinformatics/btp163. 10.1093/bioinformatics/btp163 PMC2682512 19304878 Apweiler R. UniProt: The Universal Protein knowledgebase. Nucleic Acids Res. 2004;32:D115–D119. doi: 10.1093/nar/gkh131. 10.1093/nar/gkh131 PMC308865 14681372 Buchfink B., Xie C., Huson D.H. Fast and sensitive protein alignment using DIAMOND. Nat. Methods. 2015;12:59–60. doi: 10.1038/nmeth.3176. 10.1038/nmeth.3176 25402007 Petersen T.N., Brunak S., von Heijne G., Nielsen H. SignalP 4.0: Discriminating signal peptides from transmembrane regions. Nat. Methods. 2011;8:785–786. doi: 10.1038/nmeth.1701. 10.1038/nmeth.1701 21959131 Bushnell B., Rood J., Singer E. BBMerge—Accurate paired shotgun read merging via overlap. PLoS ONE. 2017;12:e0185056. doi: 10.1371/journal.pone.0185056. 10.1371/journal.pone.0185056 PMC5657622 29073143 Love M., Huber W., Anders S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 2014;15:550. doi: 10.1186/s13059-014-0550-8. 10.1186/s13059-014-0550-8 PMC4302049 25516281 Bray N.L., Pimentel H., Melsted P., Pachter L. Near-optimal probabilistic RNA-seq quantification. Nat. Biotechnol. 2016;34:525–527. doi: 10.1038/nbt.3519. 10.1038/nbt.3519 27043002 Robinson M.D., McCarthy D.J., Smyth G.K. EdgeR: A Bioconductor package for differential expression analysis of digital gene expression data. Bioinformatics. 2010;26:139–140. doi: 10.1093/bioinformatics/btp616. 10.1093/bioinformatics/btp616 PMC2796818 19910308 Heberle H., Meirelles G.V., da Silva F.R., Telles G.P., Minghim R. InteractiVenn: A web-based tool for the analysis of sets through Venn diagrams. BMC Bioinformatics. 2015;16:169. doi: 10.1186/s12859-015-0611-3. 10.1186/s12859-015-0611-3 PMC4455604 25994840 Zhang Z., Hu J. Development and Validation of Endogenous Reference Genes for Expression Profiling of Medaka (Oryzias latipes) Exposed to Endocrine Disrupting Chemicals by Quantitative Real-Time RT-PCR. Toxicol. Sci. 2007;95:356–368. doi: 10.1093/toxsci/kfl161. 10.1093/toxsci/kfl161 17093204 Wan H., Zhao Z., Qian C., Sui Y., Malik A.A., Chen J. Selection of appropriate reference genes for gene expression studies by quantitative real-time polymerase chain reaction in cucumber. Anal. Biochem. 2010;399:257–261. doi: 10.1016/j.ab.2009.12.008. 10.1016/j.ab.2009.12.008 20005862 Clarke B., Rahman S. A microarray analysis of wheat grain hardness. Theor. Appl. Genet. 2005;110:1259–1267. doi: 10.1007/s00122-005-1962-3. 10.1007/s00122-005-1962-3 15806348 Lee J.M., Roche J.R., Donaghy D.J., Thrush A., Sathish P. Validation of reference genes for quantitative RT-PCR studies of gene expression in perennial ryegrass (Lolium perenne L.) BMC Mol. Biol. 2010;11:8. doi: 10.1186/1471-2199-11-8. 10.1186/1471-2199-11-8 PMC2827471 20089196 Xie F., Xiao P., Chen D., Xu L., Zhang B. miRDeepFinder: A miRNA analysis tool for deep sequencing of plant small RNAs. Plant Mol. Biol. 2012;80:75–84. doi: 10.1007/s11103-012-9885-2. 10.1007/s11103-012-9885-2 22290409 Yuan J.S., Wang D., Stewart C.N. Statistical methods for efficiency adjusted real-time PCR quantification. Biotechnol. J. 2008;3:112–123. doi: 10.1002/biot.200700169. 10.1002/biot.200700169 18074404 31181629 2020 09 30 2223-7747 8 6 2019 Jun 07 Plants (Basel, Switzerland) Plants (Basel) Transcriptomic Analysis Identifies New Non-Target Site Glyphosate-Resistance Genes in Conyza bonariensis . 157 10.3390/plants8060157 Conyza bonariensis (hairy fleabane) is one of the most problematic and widespread glyphosate-resistant weeds in the world. This highly competitive weed species significantly interferes with crop growth and substantially decreases crop yield. Despite its agricultural importance, the molecular mechanisms of glyphosate resistance are still unknown. The present RNA-Seq study was performed with the goal of identifying differentially expressed candidate transcripts (genes) related to metabolism-based non-target site glyphosate resistance in C. bonariensis . The whole-transcriptome was de novo assembled from glyphosate-resistant and -sensitive biotypes of C. bonariensis from Southern Brazil. The RNA was extracted from untreated and glyphosate-treated plants at several timepoints up to 288 h after treatment in both biotypes. The transcriptome assembly produced 90,124 contigs with an average length of 777 bp and N50 of 1118 bp. In response to glyphosate treatment, differential gene expression analysis was performed on glyphosate-resistant and -sensitive biotypes. A total of 9622 genes were differentially expressed as a response to glyphosate treatment in both biotypes, 4297 (44.6%) being up- and 5325 (55.4%) down-regulated. The resistant biotype presented 1770 up- and 2333 down-regulated genes while the sensitive biotype had 2335 and 2800 up- and down-regulated genes, respectively. Among them, 974 up- and 1290 down-regulated genes were co-expressed in both biotypes. In the present work, we identified 41 new candidate target genes from five families related to herbicide transport and metabolism: 19 ABC transporters, 10 CYP450s, one glutathione S-transferase (GST), five glycosyltransferases (GT), and six genes related to antioxidant enzyme catalase (CAT), peroxidase (POD), and superoxide dismutase (SOD). The candidate genes may participate in metabolic-based glyphosate resistance via oxidation, conjugation, transport, and degradation, plus antioxidation. One or more of these genes might 'rescue' resistant plants from irreversible damage after glyphosate treatment. The 41 target genes we report in the present study may inform further functional genomics studies, including gene editing approaches to elucidate glyphosate-resistance mechanisms in C. bonariensis .Piasecki Cristiano C 0000-0002-2868-6863 Department of Crop Protection, Federal University of Pelotas (UFPel), Pelotas 96010-610, Brazil. cpiasecki@utk.edu. Department of Plant Sciences, University of Tennessee (UTK), Knoxville, TN 37996, USA. cpiasecki@utk.edu. Yang Yongil Y 0000-0002-6925-5410 Department of Plant Sciences, University of Tennessee (UTK), Knoxville, TN 37996, USA. yyang98@utk.edu. Benemann Daiane P DP Department of Crop Protection, Federal University of Pelotas (UFPel), Pelotas 96010-610, Brazil. daiane.benemann@ufpel.edu.br. Kremer Frederico S FS Center for Technological Development, Federal University of Pelotas (UFPel), Pelotas 96010-610, Brazil. frederico.kremer@thrivedatascience.com. Galli Vanessa V Center for Technological Development, Federal University of Pelotas (UFPel), Pelotas 96010-610, Brazil. vanessa.galli@ufpel.edu.br. Millwood Reginald J RJ Department of Plant Sciences, University of Tennessee (UTK), Knoxville, TN 37996, USA. rmillwood@utk.edu. Cechin Joanei J Department of Crop Protection, Federal University of Pelotas (UFPel), Pelotas 96010-610, Brazil. jcechin@ufpel.edu.br. Agostinetto Dirceu D Department of Crop Protection, Federal University of Pelotas (UFPel), Pelotas 96010-610, Brazil. dirceu_agostinetto@ufpel.edu.br. Maia Luciano C LC Department of Plant Breeding, Federal University of Pelotas (UFPel), Pelotas 96010-610, Brazil. luciano.maia@ufpel.edu.br. Vargas Leandro L Department of Weed Science, Brazilian Agricultural Research Corporation (Embrapa), Passo Fundo 99050-970, Brazil. leandro.vargas@embrapa.br. Stewart C Neal CN Jr 0000-0003-3026-9193 Department of Plant Sciences, University of Tennessee (UTK), Knoxville, TN 37996, USA. nealstewart@utk.edu. eng 0000 Conselho Nacional de Desenvolvimento Científico e Tecnológico 00000 Coordenação de Aperfeiçoamento de Pessoal de Nível Superior Journal Article 2019 06 07 Switzerland Plants (Basel) 101596181 2223-7747 RNA-Seq differential gene expression hairy fleabane herbicide metabolization herbicide resistance next-generation sequencing non-target-site resistance (NTSR) The authors declare no conflict of interest. 2019 5 4 2019 5 31 2019 6 4 2019 6 12 6 0 2019 6 12 6 0 2019 6 12 6 1 2019 6 7 epublish 31181629 PMC6630842 10.3390/plants8060157 plants8060157 Jeschke P. Progress of modern agricultural chemistry and future prospects. Pest Manag. Sci. 2016;72:433–455. doi: 10.1002/ps.4190. 10.1002/ps.4190 26577980 Van Wychen L. WSSA Calculates Billions in Potential Economic Losses from Uncontrolled Weeds. [(accessed on 10 December 2018)];Weed Sci. Soc. Am. 2016 Available online: http://wssa.net/wp-content/uploads/WSSA-Crop-Losses-Release.pdf. Trezzi M.M., Vidal R.A., Patel F., Miotto E., Debastiani F., Balbinot A.A., Mosquen R. Impact of Conyza bonariensis density and establishment period on soyabean grain yield, yield components and economic threshold. Weed Res. 2015;55:34–41. doi: 10.1111/wre.12125. 10.1111/wre.12125 Bajwa A.A., Sadia S., Ali H.H., Jabran K., Peerzada A.M., Chauhan B.S. Biology and management of two important Conyza weeds: A global review. Environ. Sci. Pollut. Res. 2016;23:24694–24710. doi: 10.1007/s11356-016-7794-7. 10.1007/s11356-016-7794-7 27798798 Shrestha A., Steinhauer K.M., Moretti M.L., Hanson B.D., Jasieniuk M., Hembree K.J., Wright S.D. Distribution of glyphosate-resistant and glyphosate-susceptible hairy fleabane (Conyza bonariensis) in central California and their phenological development. J. Pest Sci. 2014;87:201–209. doi: 10.1007/s10340-013-0524-8. 10.1007/s10340-013-0524-8 Amaro-Blanco I., Fernández-Moreno P.T., Osuna-Ruiz M.D., Bastida F., De Prado R. Mechanisms of glyphosate resistance and response to alternative herbicide-based management in populations of the three Conyza species introduced in southern Spain. Pest Manag. Sci. 2018;74:1925–1937. doi: 10.1002/ps.4896. 10.1002/ps.4896 29479817 Trezzi M.M., Vidal R.A., Xavier E., Rosin D., Balbinot A.A., Jr., Prates M. Resistência ao glyphosate em biótipos de buva (Conyza spp.) das regiões oeste e sudoeste do Paraná. Planta Daninha. 2011;29:1113–1120. doi: 10.1590/S0100-83582011000500019. 10.1590/S0100-83582011000500019 Vargas L., Bianchi M., Rizzardi M., Agostinetto D., Dal Magro T. Conyza bonariensis biotypes resistant to glyphosate in southern Brazil. Planta Daninha. 2007;25:573–578. doi: 10.1590/S0100-83582007000300017. 10.1590/S0100-83582007000300017 Heap I. The International Survey of Herbicide Resistant Weeds. [(accessed on 10 January 2019)]; Available online: www.weedscience.org. Kleinman Z., Ben-Ami G., Rubin B. From sensitivity to resistance—Factors affecting the response of Conyza spp. to glyphosate. Pest Manag. Sci. 2016;72:1681–1688. doi: 10.1002/ps.4187. 10.1002/ps.4187 26573966 Kleinman Z., Rubin B. Non-target-site glyphosate resistance in Conyza bonariensis is based on modified subcellular distribution of the herbicide. Pest Manag. Sci. 2017;73:246–253. doi: 10.1002/ps.4293. 10.1002/ps.4293 27098558 Matzrafi M., Lazar T.W., Sibony M., Rubin B. Conyza species: Distribution and evolution of multiple target-site herbicide resistances. Planta. 2015;242:259–267. doi: 10.1007/s00425-015-2306-4. 10.1007/s00425-015-2306-4 25912190 Duke S.O. The history and current status of glyphosate. Pest Manag. Sci. 2018;74:1027–1034. doi: 10.1002/ps.4652. 10.1002/ps.4652 28643882 Powles S.B., Yu Q. Evolution in Action: Plants resistant to herbicides. Annu. Rev. Plant Biol. 2010;61:317–347. doi: 10.1146/annurev-arplant-042809-112119. 10.1146/annurev-arplant-042809-112119 20192743 Baucom R.S., Holt J.S. Weeds of agricultural importance: Bridging the gap between evolutionary ecology and crop and weed science. New Phytol. 2009;184:741–743. doi: 10.1111/j.1469-8137.2009.03077.x. 10.1111/j.1469-8137.2009.03077.x 20021591 Hereward J.P., Werth J.A., Thornby D.F., Keenan M., Chauhan B.S., Walter G.H. Gene expression in response to glyphosate treatment in fleabane (Conyza bonariensis)—Glyphosate death response and candidate resistance genes. Pest Manag. Sci. 2018;74:2346–2355. doi: 10.1002/ps.4804. 10.1002/ps.4804 29193675 Maroli A.S., Gaines T.A., Foley M.E., Duke S.O., Doğramacı M., Anderson J.V., Horvath D.P., Chao W.S., Tharayil N. Omics in weed science: A perspective from genomics, transcriptomics, and metabolomics approaches. Weed Sci. 2018;66:681–695. doi: 10.1017/wsc.2018.33. 10.1017/wsc.2018.33 Délye C., Duhoux A., Pernin F., Riggins C.W., Tranel P.J. Molecular mechanisms of herbicide resistance. Weed Sci. 2015;63:91–115. doi: 10.1614/WS-D-13-00096.1. 10.1614/WS-D-13-00096.1 Sammons R.D., Gaines T.A. Glyphosate resistance: State of knowledge. Pest Manag. Sci. 2014;70:1367–1377. doi: 10.1002/ps.3743. 10.1002/ps.3743 PMC4260172 25180399 Yuan J.S., Tranel P.J., Stewart C.N. Non-target-site herbicide resistance: A family business. Trends Plant Sci. 2007;12:1360–1385. doi: 10.1016/j.tplants.2006.11.001. 10.1016/j.tplants.2006.11.001 17161644 Moretti M.L., Alárcon-Reverte R., Pearce S., Morran S., Hanson B.D. Transcription of putative tonoplast transporters in response to glyphosate and paraquat stress in Conyza bonariensis and Conyza canadensis and selection of reference genes for qRT-PCR. PLoS ONE. 2017 doi: 10.1371/journal.pone.0180794. 10.1371/journal.pone.0180794 PMC5507266 28700644 Feng P.C.C., Tran M., Chiu T., Sammons R.D., Heck G.R., CaJacob C.A. Investigations into glyphosate-resistant horseweed (Conyza canadensis): Retention, uptake, translocation, and metabolism. Weed Sci. 2004;52:498–505. doi: 10.1614/WS-03-137R. 10.1614/WS-03-137R Peng Y., Abercrombie L.G., Yuan J.S., Riggins C.W., Sammons R.D., Tranel J., Stewart C.N. Characterization of the horseweed (Conyza canadensis) transcriptome using GS-FLX 454 pyrosequencing and its application for expression analysis of candidate non-target herbicide resistance genes. Pest Manag. Sci. 2010;66:1053–1062. doi: 10.1002/ps.2004. 10.1002/ps.2004 20715018 Yuan J.S., Abercrombie L.L.G., Cao Y., Halfhill M.D., Zhou X., Peng Y., Hu J., Rao M.R., Heck G.R., Larosa T.J., et al. Functional Genomics Analysis of Horseweed (Conyza canadensis) with Special Reference to the Evolution of Non–Target-Site Glyphosate Resistance. Weed Sci. 2010;58:109–117. doi: 10.1614/WS-D-09-00037.1. 10.1614/WS-D-09-00037.1 Délye C. Unraveling the genetic bases of non-target-site-based resistance (NTSR) to herbicides: A major challenge for weed science in the forthcoming decade. Pest Manag. Sci. 2013;69:176–187. doi: 10.1002/ps.3318. 10.1002/ps.3318 22614948 Gardin J.A.C., Gouzy J., Carrère S., Délye C. ALOMYbase, a resource to investigate non-target-site-based resistance to herbicides inhibiting acetolactate-synthase (ALS) in the major grass weed Alopecurus myosuroides (black-grass) BMC Genom. 2015;16:590. doi: 10.1186/s12864-015-1804-x. 10.1186/s12864-015-1804-x PMC4534104 26265378 Gehan M.A., Greenham K., Mockler T.C., McClung C.R. Transcriptional networks-crops, clocks, and abiotic stress. Curr. Opin. Plant Biol. 2015;24:39–46. doi: 10.1016/j.pbi.2015.01.004. 10.1016/j.pbi.2015.01.004 25646668 Piasecki C., Carvalho I., Cechin J., Goulart F., Maia L., Agostinetto D., Caverzan A., Stewart C.N., Jr., Vargas L. Oxidative stress and differential antioxidant enzyme activity in glyphosate-resistant and sensitive hairy fleabane in response to glyphosate treatment. Bragantia. 2019 in press. Mueller T.M., Massey J.H., Hayes R.M., Main C.L., Stewart C.N., Jr. Shikimate accumulates in both glyphosate-sensitive and glyphosate-resistant horseweed (Conyza canadensis L. Cronq.) J. Agric. Food Chem. 2003;51:680–684. doi: 10.1021/jf026006k. 10.1021/jf026006k 12537441 Délye C., Jasieniuk M., Le Corre V. Deciphering the evolution of herbicide resistance in weeds. Trends Genet. 2013;29:649–658. doi: 10.1016/j.tig.2013.06.001. 10.1016/j.tig.2013.06.001 23830583 Cobb A.H., Reade J.P.H. Herbicides and Plant Physiology. 2nd ed. Wiley-Blackwell; Shropshire, UK: 2010. p. 286. González-Torralva F., Brown A.P., Chivasa S. Comparative proteomic analysis of horseweed (Conyza canadensis) biotypes identifies candidate proteins for glyphosate resistance. Sci. Rep. 2017;7:42565. doi: 10.1038/srep42565. 10.1038/srep42565 PMC5309786 28198407 Gaines T.A., Lorentz L., Figge A., Herrmann J., Maiwald F., Ott M.C., Han H., Busi R., Yu Q., Powles S.B., et al. RNA-Seq transcriptome analysis to identify genes involved in metabolism-based diclofop resistance in Lolium rigidum. Plant J. 2014;78:865–876. doi: 10.1111/tpj.12514. 10.1111/tpj.12514 24654891 Maroli A.S., Nandula V.K., Dayan F.E., Duke S.O., Gerard P., Tharayil N. Metabolic profiling and enzyme analyses indicate a potential role of antioxidant systems in complementing glyphosate resistance in an Amaranthus palmeri biotype. J. Agric. Food Chem. 2015;63:9199–9209. doi: 10.1021/acs.jafc.5b04223. 10.1021/acs.jafc.5b04223 26329798 Kreuz K., Tommasini R., Martinoia E. Old enzymes for a new job: Herbicide detoxification in plants. Plant Physiol. 1996;111:349–353. doi: 10.1104/pp.111.2.349. 10.1104/pp.111.2.349 PMC157843 12226292 Siminszky B. Plant cytochrome P450-mediated herbicide metabolism. Phytochem. Rev. 2006;5:445–458. doi: 10.1007/s11101-006-9011-7. 10.1007/s11101-006-9011-7 Schuler M.A., Werck-Reichhart D. Functional genomics of P450s. Annu. Rev. Plant Biol. 2003;54:629–667. doi: 10.1146/annurev.arplant.54.031902.134840. 10.1146/annurev.arplant.54.031902.134840 14503006 Xu J., Wang X., Guo W. The cytochrome P450 superfamily: Key players in plant development and defense. J. Integr. Agric. 2015;14:1673–1686. doi: 10.1016/S2095-3119(14)60980-1. 10.1016/S2095-3119(14)60980-1 Cummins I., Dixon D.P., Freitag-Pohl S., Skipsey M., Edwards R. Multiple roles for plant glutathione transferases in xenobiotic detoxification. Drug Metab. Rev. 2011;43:266–280. doi: 10.3109/03602532.2011.552910. 10.3109/03602532.2011.552910 21425939 Busi R., Porri A., Gaines T.A., Powles S.B.P. Pyroxasulfone resistance in Lolium rigidum is metabolism-based. Pestic. Biochem. Physiol. 2018;148:74–80. doi: 10.1016/j.pestbp.2018.03.017. 10.1016/j.pestbp.2018.03.017 29891380 Bowles D., Lim E.-K., Poppenberger B., Vaistij F.E. Glycosyltransferases of lipophilic small molecules. Annu. Rev. Plant Biol. 2006;57:567–597. doi: 10.1146/annurev.arplant.57.032905.105429. 10.1146/annurev.arplant.57.032905.105429 16669774 Tani E., Chachalis D., Travlos I.S. A Glyphosate resistance mechanism in Conyza canadensis involves synchronization of EPSPS and ABC-transporter genes. Plant Mol. Biol. Rep. 2015;33:1721–1730. doi: 10.1007/s11105-015-0868-8. 10.1007/s11105-015-0868-8 Tani E., Chachalis D., Travlos I.S., Bilalis D. Environmental conditions influence induction of key ABC-transporter genes affecting glyphosate resistance mechanism in Conyza canadensis. Int. J. Mol. Sci. 2016;17:342. doi: 10.3390/ijms17040342. 10.3390/ijms17040342 PMC4848879 27104532 Dinelli G., Marotti I., Bonetti A., Catizone P., Urbano J.M., Barnes J. Physiological and molecular basis of glyphosate resistance in C. bonariensis (L.) Cronq. biotypes from Spain. Weed Res. 2008;48:257–265. doi: 10.1111/j.1365-3180.2008.00623.x. 10.1111/j.1365-3180.2008.00623.x Schönbrunn E., Eschenburg S., Shuttleworth W.A., Scloss J.V., Amrhein N., Evans J.N.S., Kabsch W. Interaction of the herbicide glyphosate with its target enzyme 5-enolpyruvylshikimate 3-phosphate synthase in atomic detail. Proc. Nat. Acad. Sci. USA. 2001;98:1376–1380. doi: 10.1073/pnas.98.4.1376. 10.1073/pnas.98.4.1376 PMC29264 11171958 Gill S.S., Tuteja N. Reactive oxygen species and antioxidant machinery in abiotic stress tolerance in crop plants. Plant Physiol. Biochem. 2010;48:909–930. doi: 10.1016/j.plaphy.2010.08.016. 10.1016/j.plaphy.2010.08.016 20870416 Foyer C.H. Redox homeostasis and antioxidant signaling: A metabolic interface between stress perception and physiological responses. Plant Cell. 2005;17:1866–1875. doi: 10.1105/tpc.105.033589. 10.1105/tpc.105.033589 PMC1167537 15987996 Garg N., Manchanda G. ROS generation in plants: Boon or bane? Plant Biosyst. 2009;143:81–96. doi: 10.1080/11263500802633626. 10.1080/11263500802633626 Harre N.T., Nie H., Jiang Y., Young B.G. Differential antioxidant enzyme activity in rapid-response glyphosate-resistant Ambrosia trifida. Pest Manag. Sci. 2018;74:2125–2132. doi: 10.1002/ps.4909. 10.1002/ps.4909 29532632 Kumar S., Trivedi P.K. Glutathione S-transferases: Role in combating abiotic stresses including arsenic detoxification in plants. Front. Plant Sci. 2018;9:751. doi: 10.3389/fpls.2018.00751. 10.3389/fpls.2018.00751 PMC5999759 29930563 Bolger A.M., Lohse M., Usadel B. Trimmomatic: A flexible trimmer for Illumina sequence data. Bioinformatics. 2014;30:2114–2120. doi: 10.1093/bioinformatics/btu170. 10.1093/bioinformatics/btu170 PMC4103590 24695404 Grabherr M.G., Haas B.J., Yassour M., Levin J.Z., Thompson D.A., Amit I., Adiconis X., Fan L., Raychowdhury R., Zeng Q., et al. Full-length transcriptome assembly from RNA-Seq data without a reference genome. Nat. Biotechnol. 2011;29:644–652. doi: 10.1038/nbt.1883. 10.1038/nbt.1883 PMC3571712 21572440 Conesa A., Madrigal P., Tarazona S., Gomez-Cabrero D., Cervera A., McPherson A., Szcześniak M.W., Gaffney D.J., Elo L.L., Zhang X., et al. A survey of best practices for RNA-seq data analysis. Genome Biol. 2016;17:13. doi: 10.1186/s13059-016-0881-8. 10.1186/s13059-016-0881-8 PMC4728800 26813401 Haas B.J., Papanicolaou A., Yassour M., Grabherr M., Blood P.D., Bowden J., Couger M.B., Eccles D., Li B., Lieber M., et al. De novo transcript sequence reconstruction from RNA-seq using the Trinity platform for reference generation and analysis. Nat. Protoc. 2013;8:1494–1512. doi: 10.1038/nprot.2013.084. 10.1038/nprot.2013.084 PMC3875132 23845962 Cock P.J.A., Antao T., Chang J.T., Chapman B.A., Cox C.J., Dalke A., Friedberg I., Hamelryck T., Kauff F., Wilczynski B., et al. Biopython: Freely available Python tools for computational molecular biology and bioinformatics. Bioinformatics. 2009;25:1422–1423. doi: 10.1093/bioinformatics/btp163. 10.1093/bioinformatics/btp163 PMC2682512 19304878 Apweiler R., Bairoch A., Wu C.H., Barker W.C., Boeckmann B., Ferro S., Gasteiger E., Huang H., Lopez R., Magrane M., et al. UniProt: The Universal Protein knowledgebase. Nucleic Acids Res. 2004;32:D115–D119. doi: 10.1093/nar/gkh131. 10.1093/nar/gkh131 PMC308865 14681372 Buchfink B., Xie C., Huson D.H. Fast and sensitive protein alignment using DIAMOND. Nat. Methods. 2015;12:59–60. doi: 10.1038/nmeth.3176. 10.1038/nmeth.3176 25402007 Petersen T.N., Brunak S., Von Heijne G., Nielsen H. SignalP 4.0: Discriminating signal peptides from transmembrane regions. Nat. Methods. 2011;8:785–786. doi: 10.1038/nmeth.1701. 10.1038/nmeth.1701 21959131 Lagesen K., Hallin P., Rødland E.A., Stærfeldt H.-H., Rognes T., Ussery D.W. RNAmmer: Consistent and rapid annotation of ribosomal RNA genes. Nucleic Acids Res. 2007;35:3100–3108. doi: 10.1093/nar/gkm160. 10.1093/nar/gkm160 PMC1888812 17452365 Camacho C., Coulouris G., Avagyan V., Ma N., Papadopoulos J., Bealer K., Madden T.L. BLAST+: Architecture and applications. BMC Bioinform. 2009;10:421. doi: 10.1186/1471-2105-10-421. 10.1186/1471-2105-10-421 PMC2803857 20003500 Altschul S.F., Gish W., Miller W., Myers E.W., Lipman D.J. Basic Local Alignment Search Tool. J. Mol. Biol. 1990;215:403–410. doi: 10.1016/S0022-2836(05)80360-2. 10.1016/S0022-2836(05)80360-2 2231712 Bray N.L., Pimentel H., Melsted P., Pachter L. Near-optimal probabilistic RNA-seq quantification. Nat. Biotechnol. 2016;34:525–527. doi: 10.1038/nbt.3519. 10.1038/nbt.3519 27043002 Robinson M.D., McCarthy D.J., Smyth G.K. edgeR: A Bioconductor package for differential expression analysis of digital gene expression data. Bioinformatics. 2010;26:139–140. doi: 10.1093/bioinformatics/btp616. 10.1093/bioinformatics/btp616 PMC2796818 19910308 Yuan J.S., Wang D., Stewart C.N. Statistical methods for efficiency adjusted real-time PCR quantification. Biotechnol. J. 2008;3:112–123. doi: 10.1002/biot.200700169. 10.1002/biot.200700169 18074404 30832379 2019 06 04 2020 02 25 1422-0067 20 5 2019 Mar 02 International journal of molecular sciences Int J Mol Sci Defenses Against ROS in Crops and Weeds: The Effects of Interference and Herbicides. 1086 10.3390/ijms20051086 The antioxidant defense system acts to maintain the equilibrium between the production of reactive oxygen species (ROS) and the elimination of toxic levels of ROS in plants. Overproduction and accumulation of ROS results in metabolic disorders and can lead to the oxidative destruction of the cell. Several stress factors cause ROS overproduction and trigger oxidative stress in crops and weeds. Recently, the involvement of the antioxidant system in weed interference and herbicide treatment in crops and weeds has been the subject of investigation. In this review, we address ROS production and plant mechanisms of defense, alterations in the antioxidant system at transcriptional and enzymatic levels in crops induced by weed interference, and herbicide exposure in crops and weeds. We also describe the mechanisms of action in herbicides that lead to ROS generation in target plants. Lastly, we discuss the relations between antioxidant systems and weed biology and evolution, as well as the interactive effects of herbicide treatment on these factors. Caverzan Andréia A 0000-0003-0925-144X Faculty of Agronomy and Veterinary Medicine, Agronomy Post-Graduate Program, University of Passo Fundo (UPF), Passo Fundo 99052-900, Brazil. acaverzan@hotmail.com. Piasecki Cristiano C 0000-0002-2868-6863 Department of Crop Protection, Federal University of Pelotas, Pelotas 96160-000, Brazil. c_piasecki@hotmail.com. Chavarria Geraldo G Faculty of Agronomy and Veterinary Medicine, Agronomy Post-Graduate Program, University of Passo Fundo (UPF), Passo Fundo 99052-900, Brazil. geraldochavarria@upf.br. Stewart C Neal CN Jr Department of Plant Sciences, University of Tennessee, Knoxville, TN 37996-4561, USA. nealstewart@utk.edu. Vargas Leandro L Department of Weed Science, Brazilian Agricultural Research Corporation (EMBRAPA), Passo Fundo 99050-970, Brazil. leandro.vargas@embrapa.br. eng Journal Article Review 2019 03 02 Switzerland Int J Mol Sci 101092791 1422-0067 0 Herbicides 0 Reactive Oxygen Species IM Crops, Agricultural drug effects genetics metabolism Evolution, Molecular Herbicide Resistance genetics Herbicides pharmacology Plant Weeds drug effects genetics metabolism Reactive Oxygen Species metabolism herbicide resistance herbicide treatment oxidative stress reactive oxygen species (ROS) weed evolution The authors declare no conflict of interest. 2019 2 3 2019 2 25 2019 3 6 6 0 2019 3 6 6 0 2019 6 5 6 0 2019 3 1 epublish 30832379 PMC6429093 10.3390/ijms20051086 ijms20051086 Pan D., Li Q.X., Lin Z., Chen C., Tang W., Pan C., Tan H., Zeng D. Interactions between salicylic acid and antioxidant enzymes tilting the balance of H2O2 from photorespiration in non-target crops under halosulfuron-methyl stress. Pestic. Biochem. Physiol. 2017;143:214–223. doi: 10.1016/j.pestbp.2017.09.007. 10.1016/j.pestbp.2017.09.007 29183595 Gill S.S., Tuteja N. Reactive oxygen species and antioxidant machinery in abiotic stresses tolerance in crop plants. Plant Physiol. Biochem. 2010;48:909–930. doi: 10.1016/j.plaphy.2010.08.016. 10.1016/j.plaphy.2010.08.016 20870416 Mittler R. ROS are good. Trends Plant Sci. 2017;22:11–19. doi: 10.1016/j.tplants.2016.08.002. 10.1016/j.tplants.2016.08.002 27666517 Czarnocka W., Karpiński S. Friend or foe? Reactive oxygen species production, scavenging and signaling in plant response to environmental stresses. Free Radic. Biol. Med. 2018;122:4–20. doi: 10.1016/j.freeradbiomed.2018.01.011. 10.1016/j.freeradbiomed.2018.01.011 29331649 Jiang L., Yang H. Prometryne-induced oxidative stress and impact on antioxidant enzymes in wheat. Ecotoxicol. Environ. Saf. 2009;72:1687–1693. doi: 10.1016/j.ecoenv.2009.04.025. 10.1016/j.ecoenv.2009.04.025 19473703 Jiang L., Ma L., Sui Y., Han S.Q., Wu Z.Y., Feng Y.X., Yang H. Effect of manure compost on the herbicide prometryne bioavailability to wheat plants. J. Hazard. Mater. 2010;184:337–344. doi: 10.1016/j.jhazmat.2010.08.041. 10.1016/j.jhazmat.2010.08.041 20828929 Afifi M., Swanton C. Early physiological mechanisms of weed competition. Weed Sci. 2012;60:542–551. doi: 10.1614/WS-D-12-00013.1. 10.1614/WS-D-12-00013.1 An J., Shen X., Ma Q., Yang C., Liu S., Chen Y. Transcriptome profiling to discover putative genes associated with paraquat resistance in goosegrass (Eleusine indica L.) PLoS ONE. 2014;9:e99940. doi: 10.1371/journal.pone.0099940. 10.1371/journal.pone.0099940 PMC4057336 24927422 Maroli A.S., Nandula V., Dayan F.E., Duke E., Gerard P., Tharayil N. Metabolic profiling and enzyme analyses indicate a potential role of antioxidant systems in complementing glyphosate resistance in an Amaranthus palmeri biotype. J. Agric. Food Chem. 2015;63:9199–9209. doi: 10.1021/acs.jafc.5b04223. 10.1021/acs.jafc.5b04223 26329798 Darmanti S., Santosa L.H., Dewi K., Nugroho L.H. Antioxidative defenses of soybean [Glycine max (L.) Merr. cv. Grobogan] against purple nutsedge (Cyperus rotundus L.) interference during drought stress. J. Anim. Plant Sci. 2016;26:225–232. Agostinetto D., Tarouco C.P., Nohatto M.A., Oliveira C., Fraga D.S. Metabolic activity of wheat and ryegrass plants in competition. Planta Daninha. 2017;35:e017155463. doi: 10.1590/s0100-83582017350100044. 10.1590/s0100-83582017350100044 Keith B.K., Burns E.E., Bothner B., Carey C.C., Mazurie A.J., Hilmer J.K., Biyiklioglu S., Budak H., Dyer W.E. Intensive herbicide use has selected for constitutively elevated levels of stress-responsive mRNAs and proteins in multiple herbicide-resistant Avena fatua L. Pest. Manag. Sci. 2017;73:2267–2281. doi: 10.1002/ps.4605. 10.1002/ps.4605 28485049 Piasecki C., Rizzardi M.A., Schons J., Caverzan A., Chavarria G. Does the interference of GR® volunteer corn alter stress metabolism on soybean? Planta Daninha. 2018;36:e018171955. doi: 10.1590/s0100-83582018360100018. 10.1590/s0100-83582018360100018 Piasecki C., Rizzardi M.A., Schons J., Caverzan A., Oliveira C. Interference of volunteer corn on stress metabolism and yield of dry bean. Planta Daninha. 2018;36:e018176669. doi: 10.1590/s0100-83582018360100112. 10.1590/s0100-83582018360100112 Harre N.T., Nie H., Jiang Y., Young B.G. Differential antioxidant enzyme activity in rapid-response glyphosate-resistant Ambrosia trifida. Pest. Manag. Sci. 2018;74:2125–2132. doi: 10.1002/ps.4909. 10.1002/ps.4909 29532632 Ahsan N., Lee D.G., Lee K.W., Alam I., Lee S.H., Bahk J.D., Lee B.H. Glyphosate-induced oxidative stress in rice leaves revealed by proteomic approach. Plant Physiol. Biochem. 2008;46:1062–1070. doi: 10.1016/j.plaphy.2008.07.002. 10.1016/j.plaphy.2008.07.002 18755596 Agostinetto D., Oliveira C., Langaro A.C., Nohatto M.A., Manica-Berto R. Change in physiological features in ryegrass biotypes in competition with soybean due resistance to glyphosate. Planta Daninha. 2016;34:517–526. doi: 10.1590/s0100-83582016340300012. 10.1590/s0100-83582016340300012 Zhang J.J., Lu Y.C., Zhang J.J., Tan L.R., Yang H. Accumulation and toxicological response of atrazine in rice crops. Ecotoxicol. Environ. Saf. 2014;102:105–112. doi: 10.1016/j.ecoenv.2013.12.034. 10.1016/j.ecoenv.2013.12.034 24530725 Song N.H., Yin X.L., Chen G.F., Yang H. Biological responses of wheat (Triticum aestivum) plants to the herbicide chlorotoluron in soils. Chemosphere. 2007;68:1779–1787. doi: 10.1016/j.chemosphere.2007.03.023. 10.1016/j.chemosphere.2007.03.023 17462703 Boulahia K., Carol P., Planchais S., Abrous-Belbachir O. Phaseolus vulgaris L. seedlings exposed to prometryn herbicide contaminated soil trigger an oxidative stress response. J. Agric. Food Chem. 2016;64:3150–3160. doi: 10.1021/acs.jafc.6b00328. 10.1021/acs.jafc.6b00328 27019272 Neve P., Vila-Aiub M., Roux F. Evolutionary-thinking in agricultural weed management. New Phytol. 2009;184:783–793. doi: 10.1111/j.1469-8137.2009.03034.x. 10.1111/j.1469-8137.2009.03034.x 19780985 Mittler R. Oxidative stress, antioxidants and stress tolerance. Trends Plant Sci. 2002;7:405–410. doi: 10.1016/S1360-1385(02)02312-9. 10.1016/S1360-1385(02)02312-9 12234732 Suzuki N., Koussevitzky S., Mittler R., Miller G. ROS and redox signaling in the response of plants to abiotic stress. Plant Cell Environ. 2012;35:259–270. doi: 10.1111/j.1365-3040.2011.02336.x. 10.1111/j.1365-3040.2011.02336.x 21486305 Das K., Roychoudhury A. Reactive oxygen species (ROS) and response of antioxidants as ROS-scavengers during environmental stress in plants. Front. Plant Sci. 2014;2:1–13. doi: 10.3389/fenvs.2014.00053. 10.3389/fenvs.2014.00053 Scandalios J.G. The rise of ROS. Trends Biochem. Sci. 2002;27:483–486. doi: 10.1016/S0968-0004(02)02170-9. 10.1016/S0968-0004(02)02170-9 12217524 Caverzan A., Casassola A., Brammer S.P. Abiotic and Biotic Stress in Plants-Recent Advances and Future Perspectives. InTech; Rijeka, Croatia: 2016. Reactive oxygen species and antioxidant enzymes involved in plant tolerance to stress; pp. 463–480. Foyer C.H., Noctor G. Redox homeostasis and antioxidant signaling: A metabolic interface between stress perception and physiological responses. Plant Cell. 2005;17:1866–1875. doi: 10.1105/tpc.105.033589. 10.1105/tpc.105.033589 PMC1167537 15987996 Anjum N.A., Gill S.S., Gill R., Hasanuzzaman M., Duarte A.C., Pereira E., Ahmad I., Tuteja R., Tuteja N. Metal/metalloid stress tolerance in plants: Role of ascorbate, its redox couple, and associated enzymes. Protoplasma. 2014;251:1265–1283. doi: 10.1007/s00709-014-0636-x. 10.1007/s00709-014-0636-x 24682425 Kumar S., Trivedi P.K. Glutathione S-Transferases: Role in Combating Abiotic Stresses Including Arsenic Detoxification in Plants. Front. Plant Sci. 2018;7:751. doi: 10.3389/fpls.2018.00751. 10.3389/fpls.2018.00751 PMC5999759 29930563 Ramos L.R.M., Pitelli R.A. Effects of different weed control periods on the productivity of corn crop. Pesq. Agropecu. Bras. 1998;29:1523–1531. Radosevich S.R., Holt J.S., Ghersa C.M. Ecology of Weeds and Invasive Plants: Relationship to Agriculture and Natural Resource Management. 3rd ed. John Wiley & Sons; Hoboken, NJ, USA: 2007. Barroso A.A.M., Yamauti M.S., Alves P.L.C.A. Interference between weed species and two bean cultivars in two times of sowing. Bragantia. 2010;69:609–616. doi: 10.1590/S0006-87052010000300012. 10.1590/S0006-87052010000300012 Gal J., Afifi M., Lee E., Lukens L., Swanton C.J. Detection of neighboring weeds alters soybean seedling roots and nodulation. Weed Sci. 2015;63:888–900. doi: 10.1614/WS-D-15-00039.1. 10.1614/WS-D-15-00039.1 Ulguim A.R., Agostinetto D., Oliveira C., Ruchel Q., Silva J.D.G., Vargas L., Avila L.A. Does competition between soybeans and Wild Poinsettia with low-level resistance or susceptibility to glyphosate affect physiology and secondary metabolism? Semina. 2017;38:1133–1144. doi: 10.5433/1679-0359.2017v38n3p1133. 10.5433/1679-0359.2017v38n3p1133 Rockenbach A.P., Rizzardi M.A., Nunes A.L., Bianchi M.A., Caverzan A., Schneider T. Interference between weeds and crop: Changes in secondary metabolism. Rev. Bras. Herbic. 2018;17:59–70. doi: 10.7824/rbh.v17i1.527. 10.7824/rbh.v17i1.527 McKenzie-Gopsill A. Ph.D. Thesis. University of Guelph; Guelph, ON, Canada: 2016. Morphological, Molecular and Physiological Mechanisms of Early Season Weed Competition in Soybean (Glycine max (L.) Merr.) De Almeida D.G., Zucoloto M., Zetun M.C., Coelho I., Sobreir F.M. Oxidative stress in vegetable cells mediated by allelochemicals. Revista Facultad Nacional de Agronomía Medellín. 2008;61:4237–4247. Ciniglia C., Mastrobuoni F., Scortichini M., Petriccione M. Oxidative damage and cell-programmed death induced in Zea mays L. by allelochemical stress. Ecotoxicology. 2015;24:926–937. doi: 10.1007/s10646-015-1435-7. 10.1007/s10646-015-1435-7 25736610 Sytykiewicz H. Expression patterns of glutathione transferase gene (GstI) in maize seedlings under juglone-induced oxidative stress. Int. J. Mol. Sci. 2011;12:7982–7995. doi: 10.3390/ijms12117982. 10.3390/ijms12117982 PMC3233451 22174645 Heap I. Global perspective of herbicide-resistant weeds. Pest Manag. Sci. 2014;70:1306–1315. doi: 10.1002/ps.3696. 10.1002/ps.3696 24302673 Cobb A.H., Reade P.H.R. Herbicides and Plant Physiology. 2nd ed. John Wiley & Sons; New York, NY, USA: 2010. 286p Servaites J.C., Tucci M.A., Geiger D.R. Glyphosate effects on carbon assimilation, ribulose bisphosphate carboxylase activity, and metabolite levels in sugar beet leaves. Plant Physiol. 1987;85:370–374. doi: 10.1104/pp.85.2.370. 10.1104/pp.85.2.370 PMC1054262 16665704 Duke S.O., Baerson S.R., Rimando A.M. Herbicides: Glyphosate. In: Plimmer J.R., Gammon D.W., Ragsdale N.N., editors. Encyclopedia of Agrochemicals. John Wiley & Sons; New York, NY, USA: 2007. Délye C., Jasieniuk M., Le Corre V. Deciphering the evolution of herbicide resistance in weeds. Trends Genet. 2013;29:649–658. doi: 10.1016/j.tig.2013.06.001. 10.1016/j.tig.2013.06.001 23830583 Grossmann K., Niggeweg R., Christiansen N., Looser R., Ehrhardt T. The herbicide saflufenacil (KixorTm) is a new inhibitor of protoporphyrinogen IX oxidase activity. Weed Sci. 2010;58:1–9. doi: 10.1614/WS-D-09-00004.1. 10.1614/WS-D-09-00004.1 Jasieniuk M., Brûlé-Babel A.L., Morrison I.N. The evolution and genetics of herbicide resistance in weeds. Weed Sci. 1996;44:176–193. doi: 10.7202/706069ar. 10.7202/706069ar Délye C. Unraveling the genetic bases of non-target-site-based resistance (NTSR) to herbicides: A major challenge for weed science in the forthcoming decade. Pest Manag. Sci. 2013;69:176–187. doi: 10.1002/ps.3318. 10.1002/ps.3318 22614948 Heap I. The International Survey of Herbicide Resistant Weeds. [(accessed on 1 February 2019)]; Available online: www.weedscience.org. Yuan J.S., Tranel P.J., Stewart C.N., Jr. Non-target-site herbicide resistance: A family business. Trends Plant Sci. 2007;12:6–13. doi: 10.1016/j.tplants.2006.11.001. 10.1016/j.tplants.2006.11.001 17161644 Cummins I., Cole D.J., Edwards R. A role for glutathione transferases functioning as glutathione peroxidases in resistance to multiple herbicides in black-grass. Plant J. 1999;18:285–292. doi: 10.1046/j.1365-313X.1999.00452.x. 10.1046/j.1365-313X.1999.00452.x 10377994 Cummins I., Bryant D.N., Edwards R. Safener responsiveness and multiple herbicide resistance in the weed black-grass (Alopecurus myosuroides) Plant Biotechnol. J. 2009;7:807–820. doi: 10.1111/j.1467-7652.2009.00445.x. 10.1111/j.1467-7652.2009.00445.x 19754839 Cummins I., Wortley D.J., Sabbadin F., He Z., Coxon C.R., Straker H.E., Sellars J.D., Knight K., Edwards L., Hughes D., et al. Key role for a glutathione transferase in multiple-herbicide resistance in grass weeds. Proc. Natl. Acad. Sci. USA. 2013;110:5812–5817. doi: 10.1073/pnas.1221179110. 10.1073/pnas.1221179110 PMC3625300 23530204 Jin Z.L., Zhang F., Ahmed Z.I., Rasheed M., Naeem M.S., Ye Q.F., Zhou W.J. Differential morphological and physiological responses of two oilseed Brassica species to a new herbicide ZJ0273 used in rapeseed fields. Pest. Biochem. Physiol. 2010;98:1–8. doi: 10.1016/j.pestbp.2010.04.002. 10.1016/j.pestbp.2010.04.002 Wu G.L., Cui J., Tao L., Yang H. Fluroxypyr triggers oxidative damage by producing superoxide and hydrogen peroxide in rice (Oryza sativa) Ecotoxicology. 2010;19:124–132. doi: 10.1007/s10646-009-0396-0. 10.1007/s10646-009-0396-0 19644752 Radwan D.E.M. Salicylic acid-induced alleviation of oxidative stress caused by clethodim in maize (Zea mays L.) leaves. Pest. Biochem. Physiol. 2012;102:182–188. doi: 10.1016/j.pestbp.2012.01.002. 10.1016/j.pestbp.2012.01.002 Jiang L., Yang Y., Jia L.X., Lin J.L., Liu Y., Pan B., Lin Y. Biological responses of wheat (Triticum aestivum) plants to the herbicide simetryneinsoils. Ecotoxicol. Environ. Saf. 2016;127:87–94. doi: 10.1016/j.ecoenv.2016.01.012. 10.1016/j.ecoenv.2016.01.012 26803524 Islam F., Farooq M.A., Gill R.A., Wang J., Yang C., Ali B., Wang G.X., Zhou W. 2,4-D attenuates salinity-induced toxicity by mediating anatomical changes, antioxidant capacity and cation transporters in the roots of rice cultivars. Sci. Rep. 2017;7:10443. doi: 10.1038/s41598-017-09708-x. 10.1038/s41598-017-09708-x PMC5585390 28874677 Vercampt H., Koleva L., Vassilev A., Vangronsveld J., Cuypers A. Short-term phytotoxicity in Brassica napus (L.) in response to pre-emergently applied metazachlor: A microcosm study. Environ. Toxicol. Chem. 2017;36:59–70. doi: 10.1002/etc.3538. 10.1002/etc.3538 27345821 Guo M.J., Wang Y.G., Yuan X.Y., Dong S.Q., Wen Y.Y., Song X.E., Guo P.Y. Responses of the antioxidant system to fluroxypyr in foxtail millet (Setaria italica L.) at the seedling stage. J. Integr. Agric. 2018;17:554–565. doi: 10.1016/S2095-3119(17)61808-2. 10.1016/S2095-3119(17)61808-2 Hu T. A glutathione s-transferase confers herbicide tolerance in rice. Crop Breed. Appl. Biotechnol. 2014;14:76–81. doi: 10.1590/1984-70332014v14n2a14. 10.1590/1984-70332014v14n2a14 Eltayeb A.E., Yamamoto S., Habora M.E.E., Yin L., Tsujimoto H., Tanaka K. Transgenic potato overexpressing Arabidopsis cytosolic AtDHAR1 showed higher tolerance to herbicide, drought and salt stresses. Breed. Sci. 2011;61:3–10. doi: 10.1270/jsbbs.61.3. 10.1270/jsbbs.61.3 Zhao N., Li W., Bai S., Guo W., Yuan G., Wang F., Liu W., Wang J. Transcriptome profiling to identify genes involved in mesosulfuron-methyl resistance in Alopecurus aequalis. Front. Plant Sci. 2017;8:1–16. doi: 10.3389/fpls.2017.01391. 10.3389/fpls.2017.01391 PMC5552757 28848590 Babineau M., Mahmood K., Mathiassen S.K., Kudsk P., Kristensen M. De novo transcriptome assembly analysis of weed Apera spica-venti from seven tissues and growth stages. BMC Genom. 2017;18:128. doi: 10.1186/s12864-017-3538-4. 10.1186/s12864-017-3538-4 PMC5294808 28166737 Matzrafi M., Shaar-Moshe L., Rubin B., Peleg Z. Unraveling the transcriptional basis of temperature-dependent pinoxaden resistance in Brachypodium hybridum. Front. Plant Sci. 2017;8:1–11. doi: 10.3389/fpls.2017.01064. 10.3389/fpls.2017.01064 PMC5478685 28680434 Chen J., Huang H., Wei S., Huang Z., Wang X., Zhang C. Investigating the mechanisms of glyphosate resistance in goosegrass (Eleusine indica (L.) Gaertn.) by RNA sequencing technology. Plant J. 2017;89:407–415. doi: 10.1111/tpj.13395. 10.1111/tpj.13395 27743420 Duhoux A., Carrère S., Duhoux A., Délye C. Transcriptional markers enable identification of rye-grass (Lolium sp.) plants with non-target-site-based resistance to herbicides inhibiting acetolactate-synthase. Plant Sci. 2015;257:22–36. doi: 10.1016/j.plantsci.2017.01.009. 10.1016/j.plantsci.2017.01.009 28224916 Pan L., Gao H., Xia W., Zhang T., Dong L. Establishing a herbicide-metabolizing enzyme library in Beckmannia syzigachne to identify genes associated with metabolic resistance. J. Exp. Bot. 2016;67:1745–1757. doi: 10.1093/jxb/erv565. 10.1093/jxb/erv565 26739863 Yang Q., Deng W., Li X., Yu Q., Bai L., Zheng M. Target-site and non-target-site based resistance to the herbicide tribenuron-methyl in flixweed (Descurainia sophia L.) BMC Genom. 2016;17:551–564. doi: 10.1186/s12864-016-2915-8. 10.1186/s12864-016-2915-8 PMC4974779 27495977 Gardin J.A.C., Gouzy J., Carrère S., Délye C. ALOMYbase, a resource to investigate non-target-site-based resistance to herbicides inhibiting acetolactate-synthase (ALS) in the major grass weed Alopecurus myosuroides (black-grass) BMC Genom. 2015;16:590. doi: 10.1186/s12864-015-1804-x. 10.1186/s12864-015-1804-x PMC4534104 26265378 Doğramacı M., Foley M.E., Horvath D.P., Hernandez A.G., Khetani R.S., Fields C.J., Keating K.M., Mikel M.A., Anderson J.V. Glyphosate’s impact on vegetative growth in leafy spurge identifies molecular processes and hormone cross-talk associated with increased branching. BMC Genom. 2015;16:395. doi: 10.1186/s12864-015-1627-9. 10.1186/s12864-015-1627-9 PMC4437557 25986459 Gaines T.A., Lorentz L., Figge A., Herrmann J., Maiwald F., Ott M.C., Han H., Busi R., Yu Q., Powles S.B., et al. RNA-Seq transcriptome analysis to identify genes involved in metabolism-based diclofop resistance in Lolium rigidum. Plant J. 2014;78:865–876. doi: 10.1111/tpj.12514. 10.1111/tpj.12514 24654891 trying2...
Publications by Cristiano Piasecki | LitMetric
Publications by authors named "Cristiano Piasecki"
Switchgrass ( L.) has immense potential as a bioenergy crop with the aim of producing biofuel as an end goal. Nitrogen (N)-related sustainability traits, such as nitrogen use efficiency (NUE) and nitrogen remobilization efficiency (NRE), are important factors affecting switchgrass quality and productivity.
View Article and Find Full Text PDF
Plants (Basel)
December 2021
Unmanned aerial vehicles (UAVs) provide an intermediate scale of spatial and spectral data collection that yields increased accuracy and consistency in data collection for morphological and physiological traits than satellites and expanded flexibility and high-throughput compared to ground-based data collection. In this study, we used UAV-based remote sensing for automated phenotyping of field-grown switchgrass (), a leading bioenergy feedstock. Using vegetation indices calculated from a UAV-based multispectral camera, statistical models were developed for rust disease caused by , leaf chlorophyll, nitrogen, and lignin contents.
View Article and Find Full Text PDF
Genes (Basel)
October 2021
The evolution of herbicide-resistant weed species is a serious threat for weed control. Therefore, we need an improved understanding of how gene regulation confers herbicide resistance in order to slow the evolution of resistance. The present study analyzed differentially expressed genes after glyphosate treatment on a glyphosate-resistant Tennessee ecotype (TNR) of horseweed (), compared to a susceptible biotype (TNS).
View Article and Find Full Text PDF
Plant Biotechnol J
February 2022
Article Synopsis
- The development of the 'mini-synplastome' provides a new method for introducing synthetic circuits in plant plastids without disturbing the native plastome. - This innovative genome structure is based on the unique organization of dinoflagellate plastomes, featuring multiple minicircles instead of a single genome. - Mini-synplastomes aim to enhance chloroplast biotechnology by allowing easy cloning and predictable transgene expression, while remaining independent from the plant's existing genetic material.
View Article and Find Full Text PDF
Front Plant Sci
October 2020
Unmanned aerial vehicle (UAV) technology is an emerging powerful approach for high-throughput plant phenotyping field-grown crops. Switchgrass ( L.) is a lignocellulosic bioenergy crop for which studies on yield, sustainability, and biofuel traits are performed.
View Article and Find Full Text PDF
Italian ryegrass (; LOLMU) is one of the most troublesome weeds in temperate regions in the world. This weed species interfere with wheat, corn, rye, and oat, causing significant crop yield losses. This species has evolved glyphosate resistance, making it difficult to control.
View Article and Find Full Text PDF
(hairy fleabane) is one of the most problematic and widespread glyphosate-resistant weeds in the world. This highly competitive weed species significantly interferes with crop growth and substantially decreases crop yield. Despite its agricultural importance, the molecular mechanisms of glyphosate resistance are still unknown.
View Article and Find Full Text PDF
The antioxidant defense system acts to maintain the equilibrium between the production of reactive oxygen species (ROS) and the elimination of toxic levels of ROS in plants. Overproduction and accumulation of ROS results in metabolic disorders and can lead to the oxidative destruction of the cell. Several stress factors cause ROS overproduction and trigger oxidative stress in crops and weeds.
View Article and Find Full Text PDF