trying...
8101MCID_676f0871ed9ab2fa250b15c0 35586220 Cristiano Piasecki[author] Piasecki, Cristiano[Full Author Name] piasecki, cristiano[Author] trying2...
trying...
3558622020231102
1664-462X132022Frontiers in plant scienceFront Plant SciThe Genetic Architecture of Nitrogen Use Efficiency in Switchgrass (Panicum virgatum L.).89361089361089361010.3389/fpls.2022.893610Switchgrass (Panicum virgatum L.) has immense potential as a bioenergy crop with the aim of producing biofuel as an end goal. Nitrogen (N)-related sustainability traits, such as nitrogen use efficiency (NUE) and nitrogen remobilization efficiency (NRE), are important factors affecting switchgrass quality and productivity. Hence, it is imperative to develop nitrogen use-efficient switchgrass accessions by exploring the genetic basis of NUE in switchgrass. For that, we used 331 diverse field-grown switchgrass accessions planted under low and moderate N fertility treatments. We performed a genome wide association study (GWAS) in a holistic manner where we not only considered NUE as a single trait but also used its related phenotypic traits, such as total dry biomass at low N and moderate N, and nitrogen use index, such as NRE. We have evaluated the phenotypic characterization of the NUE and the related traits, highlighted their relationship using correlation analysis, and identified the top ten nitrogen use-efficient switchgrass accessions. Our GWAS analysis identified 19 unique single nucleotide polymorphisms (SNPs) and 32 candidate genes. Two promising GWAS candidate genes, caffeoyl-CoA O-methyltransferase (CCoAOMT) and alfin-like 6 (AL6), were further supported by linkage disequilibrium (LD) analysis. Finally, we discussed the potential role of nitrogen in modulating the expression of these two genes. Our findings have opened avenues for the development of improved nitrogen use-efficient switchgrass lines.Copyright © 2022 Shrestha, Chhetri, Kainer, Xu, Hamilton, Piasecki, Wolfe, Wang, Saha, Jacobson, Millwood, Mazarei and Stewart.ShresthaVivekVDepartment of Plant Sciences, The University of Tennessee, Knoxville, Knoxville, TN, United States.Center for Bioenergy Innovation, Oak Ridge National Laboratory, Oak Ridge, TN, United States.ChhetriHari BHBCenter for Bioenergy Innovation, Oak Ridge National Laboratory, Oak Ridge, TN, United States.KainerDavidDCenter for Bioenergy Innovation, Oak Ridge National Laboratory, Oak Ridge, TN, United States.XuYapingYDepartment of Plant Sciences, The University of Tennessee, Knoxville, Knoxville, TN, United States.Center for Bioenergy Innovation, Oak Ridge National Laboratory, Oak Ridge, TN, United States.HamiltonLanceLDepartment of Plant Sciences, The University of Tennessee, Knoxville, Knoxville, TN, United States.Center for Bioenergy Innovation, Oak Ridge National Laboratory, Oak Ridge, TN, United States.PiaseckiCristianoCATSI Brazil Pesquisa e Consultoria, Passo Fundo, Brazil.WolfeBenBDepartment of Plant Sciences, The University of Tennessee, Knoxville, Knoxville, TN, United States.Center for Bioenergy Innovation, Oak Ridge National Laboratory, Oak Ridge, TN, United States.WangXueyanXCenter for Bioenergy Innovation, Oak Ridge National Laboratory, Oak Ridge, TN, United States.Noble Research Institute, Ardmore, OK, United States.SahaMalayMCenter for Bioenergy Innovation, Oak Ridge National Laboratory, Oak Ridge, TN, United States.Noble Research Institute, Ardmore, OK, United States.JacobsonDanielDCenter for Bioenergy Innovation, Oak Ridge National Laboratory, Oak Ridge, TN, United States.MillwoodReginald JRJDepartment of Plant Sciences, The University of Tennessee, Knoxville, Knoxville, TN, United States.Center for Bioenergy Innovation, Oak Ridge National Laboratory, Oak Ridge, TN, United States.MazareiMitraMDepartment of Plant Sciences, The University of Tennessee, Knoxville, Knoxville, TN, United States.Center for Bioenergy Innovation, Oak Ridge National Laboratory, Oak Ridge, TN, United States.StewartC NealCNJrDepartment of Plant Sciences, The University of Tennessee, Knoxville, Knoxville, TN, United States.Center for Bioenergy Innovation, Oak Ridge National Laboratory, Oak Ridge, TN, United States.engJournal Article20220502
SwitzerlandFront Plant Sci1015682001664-462Xaccessionsgenome wide association studynitrogen remobilization efficiencynitrogen use efficiencyswitchgrassThe authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.
20223102022412022519220202252060202252061202211epublish35586220PMC910887010.3389/fpls.2022.893610Adler P. R., Sanderson M. A., Boateng A. A., Weimer P. J., Jung H.-J. G. (2006). Biomass yield and biofuel quality of switchgrass harvested in fall or spring. Agron J. 98 1518–1525. 10.2134/agronj2005.035110.2134/agronj2005.0351Ball Coelho B., Roy R., Bruin A. (2006). Nitrogen recovery and partitioning with different rates and methods of sidedressed manure. Soil Sci. Soc. Am. J. 70 464–473. 10.2136/sssaj2005.012210.2136/sssaj2005.0122Byrnes B. (1990). Environmental effects of N fertilizer use—An overview. Fertil. Res. 26 209–215. 10.1007/BF0104875810.1007/BF01048758Camargo E. L. O., Nascimento L. C., Soler M., Salazar M. M., Lepikson-Neto J., Marques W. L., et al. (2014). Contrasting nitrogen fertilization treatments impact xylem gene expression and secondary cell wall lignification in Eucalyptus. BMC Plant Biol. 14:256. 10.1186/s12870-014-0256-910.1186/s12870-014-0256-9PMC418975725260963Chandrika N. N. P., Sundaravelpandian K., Yu S. M., Schmidt W. (2013). Alfin-Like 6 is involved in root hair elongation during phosphate deficiency in Arabidopsis. New Phytol. 198 709–720. 10.1111/nph.1219410.1111/nph.1219423432399Chang C. C., Chow C. C., Tellier L. C., Vattikuti S., Purcell S. M., Lee J. J. (2015). Second-generation PLINK: rising to the challenge of larger and richer datasets. Gigascience 4:7. 10.1186/s13742-015-0047-810.1186/s13742-015-0047-8PMC434219325722852Chien S. H., Teixeira L. A., Cantarella H., Rehm G. W., Grant C. A., Gearhart M. M. (2016). Agronomic effectiveness of granular nitrogen/phosphorus fertilizers containing elemental sulfur with and without ammonium sulfate: a review. Agron J. 108 1203–1213. 10.2134/agronj2015.027610.2134/agronj2015.0276Congreves K. A., Otchere O., Ferland D., Farzadfar S., Williams S., Arcand M. M. (2021). Nitrogen use efficiency definitions of today and tomorrow. Front. Plant Sci. 12:637108. 10.3389/fpls.2021.63710810.3389/fpls.2021.637108PMC822081934177975Cormier F., Le Gouis J., Dubreuil P., Lafarge S., Praud S. (2014). A genome-wide identification of chromosomal regions determining nitrogen use efficiency components in wheat (Triticum aestivum L.). Theor. Appl. Genet. 127 2679–2693. 10.1007/s00122-014-2407-710.1007/s00122-014-2407-725326179Dobermann A. (2007). “Nutrient use efficiency–measurement and management,” in General Principles of FBMPs, IFA International Workshop on Fertilizer Best Management Practices, ed. IFA (Paris: International Fertilizer Industry Association(IFA)), 1–30.Doerge R. W. (2002). Multifactorial genetics: mapping and analysis of quantitative trait loci in experimental populations. Nat. Rev. Genet. 3:43. 10.1038/nrg70310.1038/nrg70311823790Dohleman F. G., Heaton E. A., Arundale R. A., Long S. P. (2012). Seasonal dynamics of above-and below-ground biomass and nitrogen partitioning in M iscanthus× giganteus and P anicum virgatum across three growing seasons. GCB Bioenergy 4 534–544. 10.1111/j.1757-1707.2011.01153.x10.1111/j.1757-1707.2011.01153.xErnst O. R., Kemanian A. R., Mazzilli S., Siri-Prieto G., Dogliotti S. (2020). The dos and don’ts of no-till continuous cropping: evidence from wheat yield and nitrogen use efficiency. Field Crops Res. 257:107934. 10.1016/j.fcr.2020.10793410.1016/j.fcr.2020.107934Fike J. H., Pease J. W., Owens V. N., Farris R. L., Hansen J. L., Heaton E. A., et al. (2017). Switchgrass nitrogen response and estimated production costs on diverse sites. GCB Bioenergy 9 1526–1542. 10.1111/gcbb.1244410.1111/gcbb.12444Fixen P., Brentrup F., Bruulsema T., Garcia F., Norton R., Zingore S. (2015). “Nutrient/fertilizer use efficiency: measurement, current situation and trends,” in Managing Water and Fertilizer for Sustainable Agricultural Intensification, eds Drechsel P., Heffer P., Magen H., Mikkelsen R., Wichelns D. (Paris: International Fertilizer Industry Association (IFA)), 270.Foehse D., Jungk A. (1983). Influence of phosphate and nitrate supply on root hair formation of rape, spinach and tomato plants. Plant Soil 74 359–368. 10.1007/BF0218135310.1007/BF02181353Gaudin A. C., Mcclymont S. A., Holmes B. M., Lyons E., Raizada M. N. (2011). Novel temporal, fine-scale and growth variation phenotypes in roots of adult-stage maize (Zea mays L.) in response to low nitrogen stress. Plant Cell Environ. 34 2122–2137. 10.1111/j.1365-3040.2011.02409.x10.1111/j.1365-3040.2011.02409.x21848860Glass A. D., Britto D. T., Kaiser B. N., Kinghorn J. R., Kronzucker H. J., Kumar A., et al. (2002). The regulation of nitrate and ammonium transport systems in plants. J. Exp. Bot. 53 855–864. 10.1093/jexbot/53.370.85510.1093/jexbot/53.370.85511912228Goel P., Sharma N. K., Bhuria M., Sharma V., Chauhan R., Pathania S., et al. (2018). Transcriptome and co-expression network analyses identify key genes regulating nitrogen use efficiency in Brassica juncea L. Sci. Rep. 8:7451. 10.1038/s41598-018-25826-610.1038/s41598-018-25826-6PMC594567829748645Good A. G., Shrawat A. K., Muench D. G. (2004). Can less yield more? Is reducing nutrient input into the environment compatible with maintaining crop production? Trends Plant Sci. 9 597–605. 10.1016/j.tplants.2004.10.00810.1016/j.tplants.2004.10.00815564127Guo D., Chen F., Inoue K., Blount J. W., Dixon R. A. (2001). Downregulation of caffeic acid 3-O-methyltransferase and caffeoyl CoA 3-O-methyltransferase in transgenic alfalfa: impacts on lignin structure and implications for the biosynthesis of G and S lignin. Plant Cell 13 73–88. 10.1105/tpc.13.1.7310.1105/tpc.13.1.73PMC10221511158530Gupta N., Gupta M., Akhatar J., Goyal A., Kaur R., Sharma S., et al. (2021). Association genetics of the parameters related to nitrogen use efficiency in Brassica juncea L. Plant Mol. Biol. 105 161–175. 10.1007/s11103-020-01076-x10.1007/s11103-020-01076-x32997301Han M., Okamoto M., Beatty P. H., Rothstein S. J., Good A. G. (2015). The genetics of nitrogen use efficiency in crop plants. Annu. Rev. Genet. 49 269–289. 10.1146/annurev-genet-112414-05503710.1146/annurev-genet-112414-05503726421509He K., Xu S., Zhang X., Li Y., Chang L., Wang Y., et al. (2020). Mining of candidate genes for nitrogen use efficiency in maize based on genome-wide association study. Mol. Breeding 40:83. 10.1007/s11032-020-01163-310.1007/s11032-020-01163-3Hitz K., Clark A. J., Van Sanford D. A. (2017). Identifying nitrogen-use efficient soft red winter wheat lines in high and low nitrogen environments. Field Crops Res. 200 1–9. 10.1371/journal.pone.022877510.1371/journal.pone.0228775PMC703950532092066Holland J. B., Nyquist W. E., Cervantes-Martínez C. T. (2003). Estimating and interpreting heritability for plant breeding: an update. Plant Breed. Rev. 22 9–112 10.1002/9780470650202.ch210.1002/9780470650202.ch2Huang S., Zhao C., Zhang Y., Wang C. (2017). “Nitrogen use efficiency in rice,” in Nitrogen in Agriculture-Updates, eds Amanullah K., Fahad S. (London: IntechOpen; ), 188–208.Jensen L., Schjoerring J. (2011). “Benefits of nitrogen for food, fibre and industrial production,” in The European Nitrogen Assessment, eds Sutton M. A., Howard C. M., Erisman J. W. (Cambridge: Cambridge University Press; ), 32–61. 10.1017/cbo9780511976988.00610.1017/cbo9780511976988.006Karunarathne S. D., Han Y., Zhang X.-Q., Zhou G., Hill C. B., Chen K., et al. (2020). Genome-wide association study and identification of candidate genes for nitrogen use efficiency in barley (Hordeum vulgare L.). Front. Plant Sci. 11:1361. 10.3389/fpls.2020.57191210.3389/fpls.2020.571912PMC750020933013994Ladha J. K., Pathak H., Krupnik T. J., Six J., van Kessel C. (2005). Efficiency of fertilizer nitrogen in cereal production: retrospects and prospects. Adv. Agron. 87 85–156. 10.1016/S0065-2113(05)87003-810.1016/S0065-2113(05)87003-8Lam H. M., Coschigano K., Oliveira I., Melo-Oliveira R., Coruzzi G. (1996). The molecular-genetics of nitrogen assimilation into amino acids in higher plants. Annu. Rev. Plant Biol. 47 569–593. 10.1146/annurev.arplant.47.1.56910.1146/annurev.arplant.47.1.56915012301Lander E. S., Schork N. J. (1994). Genetic dissection of complex traits. Science 265 2037–2048. 10.1126/science.809122610.1126/science.80912268091226Langholtz M., Davison B. H., Jager H. I., Eaton L., Baskaran L. M., Davis M., et al. (2021). Increased nitrogen use efficiency in crop production can provide economic and environmental benefits. Sci. Total Environ. 758:143602. 10.1016/j.scitotenv.2020.14360210.1016/j.scitotenv.2020.14360233234272Lemus R., Parrish D. J., Abaye O. (2008). Nitrogen-use dynamics in switchgrass grown for biomass. Bioenergy Res. 1 153–162. 10.1007/s12155-008-9014-x10.1007/s12155-008-9014-xLi F., Piasecki C., Millwood R. J., Wolfe B., Mazarei M., Stewart C. N., Jr. (2020). High-throughput switchgrass phenotyping and biomass modeling by UAV. Front. Plant Sci. 1 10.3389/fpls.2020.57407310.3389/fpls.2020.574073PMC760684933193511Li X., Chen W., Zhao Y., Xiang Y., Jiang H., Zhu S., et al. (2013). Downregulation of caffeoyl-CoA O-methyltransferase (CCoAOMT) by RNA interference leads to reduced lignin production in maize straw. Genet. Mol.Biol. 36 540–546. 10.1590/S1415-4757201300500003910.1590/S1415-47572013005000039PMC387318624385858Liu S. J., Huang Y. H., He C. J., Cheng F., Zhang Y. W. (2016). Cloning, bioinformatics and transcriptional analysis of caffeoyl-coenzyme A 3-O-methyltransferase in switchgrass under abiotic stress. J. Integr. Agric. 15 636–649. 10.1016/S2095-3119(16)61363-110.1016/S2095-3119(16)61363-1Lovell J. T., MacQueen A. H., Mamidi S., Bonnette J., Jenkins J., Napier J. D., et al. (2021). Genomic mechanisms of climate adaptation in polyploid bioenergy switchgrass. Nature 590 438–444. 10.1038/s41586-020-03127-110.1038/s41586-020-03127-1PMC788665333505029Lu J., Zhao H., Wei J., He Y., Shi C., Wang H., et al. (2004). Lignin reduction in transgenic poplars by expressing antisense CCoAOMT gene. Prog. Nat. Sci. 14 1060–1063. 10.1080/1002007041233134480110.1080/10020070412331344801Mackay T. F. (2001). The genetic architecture of quantitative traits. Annu. Rev. Genet. 35 303–339. 10.1146/annurev.genet.35.102401.09063310.1146/annurev.genet.35.102401.09063311700286Meyermans H., Morreel K., Lapierre C., Pollet B., De Bruyn A., Busson R., et al. (2000). Modifications in lignin and accumulation of phenolic glucosides in poplar xylem upon down-regulation of caffeoyl-coenzyme A O-methyltransferase, an enzyme involved in lignin biosynthesis. J. Biol. Chem. 275 36899–36909. 10.1074/jbc.M00691520010.1074/jbc.M00691520010934215Morosini J. S., de Freitas Mendonça L., Lyra D. H., Galli G., Vidotti M. S., Fritsche-Neto R. (2017). Association mapping for traits related to nitrogen use efficiency in tropical maize lines under field conditions. Plant Soil 421 453–463. 10.1007/s11104-017-3479-310.1007/s11104-017-3479-3o Di Nasso N. N., Roncucci N., Bonari E. (2013). Seasonal dynamics of aboveground and belowground biomass and nutrient accumulation and remobilization in giant reed (Arundo donax L.): a three-year study on marginal land. Bioenergy Res. 6 725–736. 10.1007/s12155-012-9289-910.1007/s12155-012-9289-9Pathak R. R., Ahmad A., Lochab S., Raghuram N. (2008). Molecular physiology of plant nitrogen use efficiency and biotechnological options for its enhancement. Curr. Sci. 94 1394–1403.Ranjan R., Yadav R. (2019). Targeting nitrogen use efficiency for sustained production of cereal crops. J. Plant Nutr. 42 1086–1113. 10.1080/01904167.2019.158949710.1080/01904167.2019.1589497Reynolds J., Walker C., Kirchner M. (2000). Nitrogen removal in switchgrass biomass under two harvest systems. Biomass Bioenergy 19 281–286. 10.1016/S0961-9534(00)00042-810.1016/S0961-9534(00)00042-8Sadeghpour A., Gorlitsky L., Hashemi M., Weis S., Herbert S. (2014). Response of switchgrass yield and quality to harvest season and nitrogen fertilizer. Agron. J. 106 290–296. 10.2134/agronj2013.018310.2134/agronj2013.0183Sanderson M., Reed R., McLaughlin S., Wullschleger S., Conger B., Parrish D., et al. (1996). Switchgrass as a sustainable bioenergy crop. Bioresour. Technol. 56 83–93. 10.1016/0960-8524(95)00176-X10.1016/0960-8524(95)00176-XShen H., Mazarei M., Hisano H., Escamilla-Trevino L., Fu C., Pu Y., et al. (2013). A genomics approach to deciphering lignin biosynthesis in switchgrass. Plant Cell 25 4342–4361. 10.1105/tpc.113.11882810.1105/tpc.113.118828PMC387572224285795Shim H., Chasman D. I., Smith J. D., Mora S., Ridker P. M., Nickerson D. A., et al. (2015). A multivariate genome-wide association analysis of 10 LDL subfractions, and their response to statin treatment, in 1868 Caucasians. PLoS One 10:e0120758. 10.1371/journal.pone.012075810.1371/journal.pone.0120758PMC440526925898129Strullu L., Cadoux S., Preudhomme M., Jeuffroy M.-H., Beaudoin N. (2011). Biomass production and nitrogen accumulation and remobilisation by Miscanthus× giganteus as influenced by nitrogen stocks in belowground organs. Field Crops Res. 121 381–391. 10.1016/j.fcr.2011.01.00510.1016/j.fcr.2011.01.005Van L. L. (2007). Evaluation of different nitrogen use efficiency indices using field-grown green bell peppers (Capsicum annuum L.). Can. J. Plant Sci. 87 565–569. 10.4141/P06-11610.4141/P06-116Wagner A., Tobimatsu Y., Phillips L., Flint H., Torr K., Donaldson L., et al. (2011). CCoAOMT suppression modifies lignin composition in Pinus radiata. Plant J. 67 119–129. 10.1111/j.1365-313X.2011.04580.x10.1111/j.1365-313X.2011.04580.x21426426Wang W., Hu B., Yuan D., Liu Y., Che R., Hu Y., et al. (2018). Expression of the nitrate transporter gene OsNRT1. 1A/OsNPF6. 3 confers high yield and early maturation in rice. Plant Cell 30 638–651. 10.1105/tpc.17.0080910.1105/tpc.17.00809PMC589483929475937Wen W., Li D., Li X., Gao Y., Li W., Li H., et al. (2014). Metabolome-based genome-wide association study of maize kernel leads to novel biochemical insights. Nat. Commun. 5:3438. 10.1038/ncomms443810.1038/ncomms4438PMC395919024633423Wolf D. D., Fiske D. A. (2009). Planting and Managing Switchgrass for Forage, Wildlife, and Conservation. Virginia Cooperative Extension, 418-013. Blacksburg, VA: Virginia Polytechnic Institute and State University.Wu X., Feng H., Wu D., Yan S., Zhang P., Wang W., et al. (2021). Using high-throughput multiple optical phenotyping to decipher the genetic architecture of maize drought tolerance. Genome Biol. 22:185. 10.1186/s13059-021-02377-010.1186/s13059-021-02377-0PMC822330234162419Xin W., Wang J., Li J., Zhao H., Liu H., Zheng H., et al. (2021). Candidate gene analysis for nitrogen absorption and utilization in japonica rice at the seedling stage based on a genome-wide association study. Front. Plant Sci. 12:670861. 10.3389/fpls.2021.67086110.3389/fpls.2021.670861PMC821202434149769Xu Y., Shrestha V., Piasecki C., Wolfe B., Hamilton L., Millwood R. J., et al. (2021). Sustainability trait modeling of field-grown switchgrass (Panicum virgatum) using UAV-based imagery. Plants 10:2726. 10.3390/plants1012272610.3390/plants10122726PMC870926534961199Yang J., Lee S. H., Goddard M. E., Visscher P. M. (2011). GCTA: a tool for genome-wide complex trait analysis. Am. J. Hum. Genet. 88 76–82. 10.1016/j.ajhg.2010.11.01110.1016/j.ajhg.2010.11.011PMC301436321167468Yang J., Worley E., Ma Q., Li J., Torres-Jerez I., Li G., et al. (2016). Nitrogen remobilization and conservation, and underlying senescence-associated gene expression in the perennial switchgrass Panicum virgatum. New Phytol. 211 75–89. 10.1111/nph.1389810.1111/nph.13898PMC668022726935010Yang J., Worley E., Wang M., Lahner B., Salt D. E., Saha M., et al. (2009). Natural variation for nutrient use and remobilization efficiencies in switchgrass. Bioenergy Res. 2 257–266. 10.1007/s12155-009-9055-910.1007/s12155-009-9055-9Zhong R., Morrison W. H., III, Himmelsbach D. S., Poole F. L., Ye Z.-H. (2000). Essential role of caffeoyl coenzyme AO-methyltransferase in lignin biosynthesis in woody poplar plants. Plant Physiol. 124 563–578. 10.1104/pp.124.2.56310.1104/pp.124.2.563PMC5916311027707Zhu F., Alseekh S., Koper K., Tong H., Nikoloski Z., Naake T., et al. (2021). Genome-wide association of the metabolic shifts underpinning dark-induced senescence in Arabidopsis. Plant Cell 34 557–578. 10.1093/plcell/koab25110.1093/plcell/koab251PMC877405334623442
3496119920211231
2223-774710122021Dec11Plants (Basel, Switzerland)Plants (Basel)Sustainability Trait Modeling of Field-Grown Switchgrass (Panicum virgatum) Using UAV-Based Imagery.272610.3390/plants10122726Unmanned aerial vehicles (UAVs) provide an intermediate scale of spatial and spectral data collection that yields increased accuracy and consistency in data collection for morphological and physiological traits than satellites and expanded flexibility and high-throughput compared to ground-based data collection. In this study, we used UAV-based remote sensing for automated phenotyping of field-grown switchgrass (Panicum virgatum), a leading bioenergy feedstock. Using vegetation indices calculated from a UAV-based multispectral camera, statistical models were developed for rust disease caused by Puccinia novopanici, leaf chlorophyll, nitrogen, and lignin contents. For the first time, UAV remote sensing technology was used to explore the potentials for multiple traits associated with sustainable production of switchgrass, and one statistical model was developed for each individual trait based on the statistical correlation between vegetation indices and the corresponding trait. Also, for the first time, lignin content was estimated in switchgrass shoots via UAV-based multispectral image analysis and statistical analysis. The UAV-based models were verified by ground-truthing via correlation analysis between the traits measured manually on the ground-based with UAV-based data. The normalized difference red edge (NDRE) vegetation index outperformed the normalized difference vegetation index (NDVI) for rust disease and nitrogen content, while NDVI performed better than NDRE for chlorophyll and lignin content. Overall, linear models were sufficient for rust disease and chlorophyll analysis, but for nitrogen and lignin contents, nonlinear models achieved better results. As the first comprehensive study to model switchgrass sustainability traits from UAV-based remote sensing, these results suggest that this methodology can be utilized for switchgrass high-throughput phenotyping in the field.XuYapingY0000-0003-1178-2776Department of Plant Sciences, University of Tennessee, Knoxville, TN 37996, USA.Center for Bioenergy Innovation, Oak Ridge National Laboratory, Oak Ridge, TN 37830, USA.ShresthaVivekV0000-0003-1173-2998Department of Plant Sciences, University of Tennessee, Knoxville, TN 37996, USA.Center for Bioenergy Innovation, Oak Ridge National Laboratory, Oak Ridge, TN 37830, USA.PiaseckiCristianoC0000-0002-2868-6863Department of Plant Sciences, University of Tennessee, Knoxville, TN 37996, USA.Center for Bioenergy Innovation, Oak Ridge National Laboratory, Oak Ridge, TN 37830, USA.ATSI Brasil Pesquisa e Consultoria, Passo Fundo 99054-328, RS, Brazil.WolfeBenjaminBDepartment of Plant Sciences, University of Tennessee, Knoxville, TN 37996, USA.Center for Bioenergy Innovation, Oak Ridge National Laboratory, Oak Ridge, TN 37830, USA.HamiltonLanceLDepartment of Plant Sciences, University of Tennessee, Knoxville, TN 37996, USA.Center for Bioenergy Innovation, Oak Ridge National Laboratory, Oak Ridge, TN 37830, USA.MillwoodReginald JRJ0000-0002-7127-1831Department of Plant Sciences, University of Tennessee, Knoxville, TN 37996, USA.Center for Bioenergy Innovation, Oak Ridge National Laboratory, Oak Ridge, TN 37830, USA.MazareiMitraM0000-0002-6116-7758Department of Plant Sciences, University of Tennessee, Knoxville, TN 37996, USA.Center for Bioenergy Innovation, Oak Ridge National Laboratory, Oak Ridge, TN 37830, USA.StewartCharles NealCN0000-0003-3026-9193Department of Plant Sciences, University of Tennessee, Knoxville, TN 37996, USA.Center for Bioenergy Innovation, Oak Ridge National Laboratory, Oak Ridge, TN 37830, USA.engDE-AC05-000R22725US Department of EnergyJournal Article20211211
SwitzerlandPlants (Basel)1015961812223-7747UAVchlorophyllhigh throughput modelingligninnitrogenrust diseasesustainabilityswitchgrassThe authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest. The funders had no role in the design of the study; in the collection, analyses, or interpretation of data; in the writing of the manuscript, or in the decision to publish the results.
202111420211129202112720211228192021122960202112296120211211epublish34961199PMC870926510.3390/plants10122726plants10122726Van Wallendael A., Bonnette J., Juenger T.E., Fritschi F.B., Fay P.A., Mitchell R.B., Lloyd-Reilley J., Rouquette F.M., Jr., Bergstrom G.C., Lowry D.B. Geographic variation in the genetic basis of resistance to leaf rust between locally adapted ecotypes of the biofuel crop switchgrass (Panicum virgatum) New Phytol. 2020;227:1696–1708. doi: 10.1111/nph.16555.10.1111/nph.1655532202657Uppalapati S.R., Serba D.D., Ishiga Y., Szabo L.J., Mittal S., Bhandari H.S., Bouton J.H., Mysore K.S., Saha M.C. Characterization of the rust fungus, Puccinia emaculata, and evaluation of genetic variability for rust resistance in switchgrass populations. BioEnergy Res. 2013;6:458–468. doi: 10.1007/s12155-012-9263-6.10.1007/s12155-012-9263-6Loomis R.S. On the utility of nitrogen in leaves. Proc. Natl. Acad. Sci. USA. 1997;94:13378–13379. doi: 10.1073/pnas.94.25.13378.10.1073/pnas.94.25.13378PMC337859391029Dinh T.H., Watanabe K., Takaragawa H., Nakabaru M., Kawamitsu Y. Photosynthetic response and nitrogen use efficiency of sugarcane under drought stress conditions with different nitrogen application levels. Plant Prod. Sci. 2017;20:412–422. doi: 10.1080/1343943X.2017.1371570.10.1080/1343943X.2017.1371570Owens V.N., Viands D.R., Mayton H.S., Fike J.H., Farris R., Heaton E., Bransby D.I., Hong C.O. Nitrogen use in switchgrass grown for bioenergy across the USA. Biomass Bioenergy. 2013;58:286–293. doi: 10.1016/j.biombioe.2013.07.016.10.1016/j.biombioe.2013.07.016Lemus R., Brummer C.E., Burras L.C., Moore K.J., Barker M.F., Molstad N.E. Effects of nitrogen fertilization on biomass yield and quality in large fields of established switchgrass in southern Iowa, USA. Biomass Bioenergy. 2008;32:1187–1194. doi: 10.1016/j.biombioe.2008.02.016.10.1016/j.biombioe.2008.02.016Madakadze I.C., Stewart K.A., Madakadze R.M., Peterson P.R., Coulman B.E., Smith D.L. Field evaluation of the chlorophyll meter to predict yield and nitrogen concentration of switchgrass. J. Plant Nutr. 1999;22:1001–1010. doi: 10.1080/01904169909365689.10.1080/01904169909365689Halter M., Mitchell J., Mann D.G.J., Muthukumar B., Stewart C.N., Jr., Nilsen E.T. Photosynthetic parameters of switchgrass (Panicum virgatum) under low radiation: Influence of stable overexpression of Miscanthus×giganteus PPDK on responses to light and CO2 under warm and cool growing conditions. New Negat Plant Sci. 2015;1–2:23–32. doi: 10.1016/j.neps.2015.08.001.10.1016/j.neps.2015.08.001Mauromicale G., Ierna A., Marchese M. Chlorophyll fluorescence and chlorophyll content in field-grown potato as affected by nitrogen supply, genotype, and plant age. Photosynthetica. 2006;44:76. doi: 10.1007/s11099-005-0161-4.10.1007/s11099-005-0161-4Yoder B.J., Pettigrew-Crosby R.E. Predicting nitrogen and chlorophyll content and concentrations from reflectance spectra (400–2500 nm) at leaf and canopy scales. Remote Sens. Environ. 1995;53:199–211. doi: 10.1016/0034-4257(95)00135-N.10.1016/0034-4257(95)00135-NHimmel M.E., Bayer E.A. Lignocellulose conversion to biofuels: Current challenges, global perspectives. Curr. Opin. Biotechnol. 2009;20:316–317. doi: 10.1016/j.copbio.2009.05.005.10.1016/j.copbio.2009.05.00519523813Ragauskas A.J., Beckham G.T., Biddy M.J., Chandra R., Chen F., Davis M.F., Davison B.H., Dixon R.A., Gilna P., Keller M., et al. Lignin valorization: Improving lignin processing in the biorefinery. Science. 2014;344:1246843. doi: 10.1126/science.1246843.10.1126/science.124684324833396Xu B., Sathitsuksanoh N., Tang Y., Udvardi M.K., Zhang J.Y., Shen Z., Balota M., Harich K., Zhang P.Y., Zhao B. Overexpression of AtLOV1 in switchgrass alters plant architecture, lignin content, and flowering time. PLoS ONE. 2012;7:e47399. doi: 10.1371/journal.pone.0047399.10.1371/journal.pone.0047399PMC353054723300513Potgieter A.B., George-Jaeggli B., Chapman S.C., Laws K., Suárez Cadavid L.A., Wixted J., Watson J., Eldridge M., Jordan D.R., Hammer G.L. Multi-spectral imaging from an unmanned aerial vehicle enables the assessment of seasonal leaf area dynamics of sorghum breeding lines. Front Plant Sci. 2017;8:1532. doi: 10.3389/fpls.2017.01532.10.3389/fpls.2017.01532PMC559977228951735Shafian S., Rajan N., Schnell R., Bagavathiannan M., Valasek J., Shi Y., Olsenholler J. Unmanned aerial systems-based remote sensing for monitoring sorghum growth and development. PLoS ONE. 2018;13:e0196605. doi: 10.1371/journal.pone.0196605.10.1371/journal.pone.0196605PMC592949929715311Li J., Shi Y., Veeranampalayam-Sivakumar A.-N., Schachtman D.P. Elucidating sorghum biomass, nitrogen and chlorophyll contents with spectral and morphological traits derived from unmanned aircraft system. Front Plant Sci. 2018;9:1406. doi: 10.3389/fpls.2018.01406.10.3389/fpls.2018.01406PMC617677730333843Simic Milas A., Romanko M., Reil P., Abeysinghe T., Marambe A. The importance of leaf area index in mapping chlorophyll content of corn under different agricultural treatments using UAV images. Int. J. Remote Sens. 2018;39:5415–5431. doi: 10.1080/01431161.2018.1455244.10.1080/01431161.2018.1455244Kanning M., Kühling I., Trautz D., Jarmer T. High-resolution UAV-based hyperspectral imagery for LAI and chlorophyll estimations from wheat for yield prediction. Remote Sens. 2018;10:2000. doi: 10.3390/rs10122000.10.3390/rs10122000Shendryk Y., Sofonia J., Garrard R., Rist Y., Skocaj D., Thorburn P. Fine-scale prediction of biomass and leaf nitrogen content in sugarcane using UAV LiDAR and multispectral imaging. Int. J. Appl. Earth Obs. Geoinf. 2020;92:102177. doi: 10.1016/j.jag.2020.102177.10.1016/j.jag.2020.102177Li S., Ding X., Kuang Q., Ata-UI-Karim S.T., Cheng T., Liu X., Tian Y., Zhu Y., Cao W., Cao Q. Potential of UAV-based active sensing for monitoring rice leaf nitrogen status. Front Plant Sci. 2018;9:1834. doi: 10.3389/fpls.2018.01834.10.3389/fpls.2018.01834PMC630208730619407Lu N., Wang W., Zhang Q., Li D., Yao X., Tian Y., Zhu Y., Cao W., Baret F., Liu S., et al. Estimation of nitrogen nutrition status in winter wheat from unmanned aerial vehicle based multi-angular multispectral imagery. Front Plant Sci. 2019;10:1601. doi: 10.3389/fpls.2019.01601.10.3389/fpls.2019.01601PMC691511431921250Kefauver S.C., Vicente R., Vergara-Díaz O., Fernandez-Gallego J.A., Kerfal S., Lopez A., Melichar J.P.E., Serret Molins M.D., Araus J.L. Comparative UAV and field phenotyping to assess yield and nitrogen use efficiency in hybrid and conventional barley. Front Plant Sci. 2017;8:1733. doi: 10.3389/fpls.2017.01733.10.3389/fpls.2017.01733PMC564132629067032Zaman-Allah M., Vergara O., Araus J.L., Tarekegne A., Magorokosho C., Zarco-Tejada P.J., Hornero A., Albà A.H., Das B., Craufurd P., et al. Unmanned aerial platform-based multi-spectral imaging for field phenotyping of maize. Plant Methods. 2015;11:35. doi: 10.1186/s13007-015-0078-2.10.1186/s13007-015-0078-2PMC447761426106438Schirrmann M., Landwehr N., Giebel A., Garz A., Dammer K.H. Early detection of stripe rust in winter wheat using deep residual neural networks. Front Plant Sci. 2021;12:475. doi: 10.3389/fpls.2021.469689.10.3389/fpls.2021.469689PMC804239433859655Li F., Piasecki C., Millwood R.J., Wolfe B., Mazarei M., Stewart C.N., Jr. High-Throughput switchgrass phenotyping and biomass modeling by UAV. Front Plant Sci. 2020;11:1532. doi: 10.3389/fpls.2020.574073.10.3389/fpls.2020.574073PMC760684933193511Maesano M., Khoury S., Nakhle F., Firrincieli A., Gay A., Tauro F., Harfouche A. UAV-based LiDAR for high-throughput determination of plant height and above-ground biomass of the bioenergy grass Arundo donax. Remote Sens. 2020;12:3464. doi: 10.3390/rs12203464.10.3390/rs12203464Chen F., Dixon R.A. Lignin modification improves fermentable sugar yields for biofuel production. Nat. Biotechnol. 2007;25:759–761. doi: 10.1038/nbt1316.10.1038/nbt131617572667Ponnusamy V.K., Nguyen D.D., Dharmaraja J., Shobana S., Banu J.R., Saratale R.G., Chang S.W., Kumar G. A review on lignin structure, pretreatments, fermentation reactions and biorefinery potential. Bioresour. Technol. 2019;271:462–472. doi: 10.1016/j.biortech.2018.09.070.10.1016/j.biortech.2018.09.07030270050Zhang Y., Naebe M. Lignin: A review on structure, properties, and applications as a light-colored UV absorber. ACS Sustain. Chem. Eng. 2021;9:1427–1442. doi: 10.1021/acssuschemeng.0c06998.10.1021/acssuschemeng.0c06998Bohnenkamp D., Behmann J., Mahlein A.K. In-field detection of yellow rust in wheat on the ground canopy and UAV scale. Remote Sens. 2019;11:2495. doi: 10.3390/rs11212495.10.3390/rs11212495Su J.Y., Liu C.J., Coombes M., Hu X.P., Wang C.H., Xu X.M., Li Q.D., Guo L., Chen W.H. Wheat yellow rust monitoring by learning from multispectral UAV aerial imagery. Comput. Electron. Agr. 2018;155:157–166. doi: 10.1016/j.compag.2018.10.017.10.1016/j.compag.2018.10.017Guo A.T., Huang W.J., Dong Y.Y., Ye H.C., Ma H.Q., Liu B., Wu W.B., Ren Y., Ruan C., Geng Y. Wheat yellow rust detection using UAV-based hyperspectral technology. Remote Sens. 2021;13:123. doi: 10.3390/rs13010123.10.3390/rs13010123Lovell J.T., Shakirov E.V., Schwartz S., Lowry D.B., Aspinwall M.J., Taylor S.H., Bonnette J., Palacio-Mejia J.D., Hawkes C.V., Fay P.A., et al. Promises and challenges of eco-physiological genomics in the field: Tests of drought responses in switchgrass. Plant Physiol. 2016;172:734–748. doi: 10.1104/pp.16.00545.10.1104/pp.16.00545PMC504707827246097Humbird D., Davis R., Tao L., Kinchin C., Hsu D., Aden A., Schoen P., Lukas J., Olthof B., Worley M., et al. Process Design and Economics for Biochemical Conversion of Lignocellulosic Biomass to Ethanol: Dilute-Acid Pretreatment and Enzymatic Hydrolysis of Corn Stover. National Renewable Energy Lab. (NREL); Golden, CO, USA: 2011. 147pMatsushita B., Yang W., Chen J., Onda Y., Qiu G. Sensitivity of the enhanced vegetation index (EVI) and normalized difference vegetation index (NDVI) to topographic effects: A case study in high-density cypress forest. Sensors. 2007;7:2636–2651. doi: 10.3390/s7112636.10.3390/s7112636PMC396523428903251Zhang K., Ge X., Shen P., Li W., Liu X., Cao Q., Zhu Y., Cao W., Tian Y. Predicting rice grain yield based on dynamic changes in vegetation indexes during early to mid-growth stages. Remote Sens. 2019;11:387. doi: 10.3390/rs11040387.10.3390/rs11040387Shaver T.M., Khosla R., Westfall D.G. Evaluation of two ground-based active crop canopy sensors in maize: Growth stage, row spacing, and sensor movement speed. Soil Sci. Soc. Am. J. 2010;74:2101–2108. doi: 10.2136/sssaj2009.0421.10.2136/sssaj2009.0421Yu J.J., Kim D.W., Lee E.J., Son S.W. Determining the optimal number of ground control points for varying study sites through accuracy evaluation of unmanned aerial system-based 3D point clouds and digital surface models. Drones. 2020;4:49. doi: 10.3390/drones4030049.10.3390/drones4030049Oniga V.-E., Breaban A.-I., Statescu F. Determining the optimum number of ground control points for obtaining high precision results based on UAS images. Proceedings. 2018;2:352. doi: 10.3390/ecrs-2-05165.10.3390/ecrs-2-05165Park J.W., Yeom D.J. Method for establishing ground control points to realize UAV-based precision digital maps of earthwork sites. J. Asian Archit. Build. 2021;2:352. doi: 10.1080/13467581.2020.1869023.10.1080/13467581.2020.1869023Ventura F., Vignudelli M., Letterio T., Gentile S.L., Anconelli S. Remote sensing and UAV vegetation index comparison with on-site FAPAR measurement; Proceedings of the 2019 IEEE International Workshop on Metrology for Agriculture and Forestry (MetroAgriFor); Portici, Italy. 24–26 October 2019; pp. 202–206.Yang S., Bai J., Zhao C., Lou H., Zhang C., Guan Y., Zhang Y., Wang Z., Yu X. The assessment of the changes of biomass and riparian buffer width in the terminal reservoir under the impact of the South-to-North Water Diversion Project in China. Ecol. Indic. 2018;85:932–943. doi: 10.1016/j.ecolind.2017.11.011.10.1016/j.ecolind.2017.11.011Possoch M., Bieker S., Hoffmeister D., Bolten A., Schellberg J., Bareth G. Multi-temporal crop surface models combined with the RGB vegetation index from UAV-based images for forage monitoring in grassland. Int. Arch. Photogramm. Remote. Sens. Spat. Inf. Sci. Gott. 2016;XLI-B1:991–998. doi: 10.5194/isprs-archives-XLI-B1-991-2016.10.5194/isprs-archives-XLI-B1-991-2016Shen H., Fu C., Xiao X., Ray T., Tang Y., Wang Z., Chen F. Developmental control of lignification in stems of lowland switchgrass variety Alamo and the effects on saccharification efficiency. BioEnergy Res. 2009;2:233–245. doi: 10.1007/s12155-009-9058-6.10.1007/s12155-009-9058-6Jiang Q., Fang S., Peng Y., Gong Y., Zhu R., Wu X., Ma Y., Duan B., Liu J. UAV-based biomass estimation for rice-combining spectral, TIN-based structural and meteorological features. Remote Sens. 2019;11:890. doi: 10.3390/rs11070890.10.3390/rs11070890Han L., Yang G., Dai H., Xu B., Yang H., Feng H., Li Z., Yang X. Modeling maize above-ground biomass based on machine learning approaches using UAV remote-sensing data. Plant Methods. 2019;15:10. doi: 10.1186/s13007-019-0394-z.10.1186/s13007-019-0394-zPMC636073630740136Yang M., Hassan M.A., Xu K., Zheng C., Rasheed A., Zhang Y., Jin X., Xia X., Xiao Y., He Z. Assessment of water and nitrogen use efficiencies through UAV-based multispectral phenotyping in winter wheat. Front Plant Sci. 2020;11 doi: 10.3389/fpls.2020.00927.10.3389/fpls.2020.00927PMC733345932676089Pourazar H., Samadzadegan F., Javan F.D. Aerial multispectral imagery for plant disease detection: Radiometric calibration necessity assessment. Eur. J. Remote Sens. 2019;52:17–31. doi: 10.1080/22797254.2019.1642143.10.1080/22797254.2019.1642143Brodbeck C., Sikora E., Delaney D., Pate G., Johnson J. Using unmanned aircraft systems for early detection of soybean diseases. Adv. Anim. Biosci. 2017;8:802–806. doi: 10.1017/S2040470017001315.10.1017/S2040470017001315Fritschi F.B., Ray J.D. Soybean leaf nitrogen, chlorophyll content, and chlorophyll a/b ratio. Photosynthetica. 2007;45:92–98. doi: 10.1007/s11099-007-0014-4.10.1007/s11099-007-0014-4Girardin P., Tollenaar M., Muldoon J.F. Effect of temporary N starvation on leaf photosynthetic rate and chlorophyll content of maize. Can. J. Plant Sci. 1985;65:491–500. doi: 10.4141/cjps85-071.10.4141/cjps85-071Guretzky J., Biermacher J., Cook B., Kering M., Mosali J. Switchgrass for forage and bioenergy: Harvest and nitrogen rate effects on biomass yields and nutrient composition. Plant Soil. 2010;339:69–81. doi: 10.1007/s11104-010-0376-4.10.1007/s11104-010-0376-4Adamec Z., Drápela K. Generalized additive models as an alternative approach to the modeling of the tree height-diameter relationship. J. For. Sci. 2015;61:235–243. doi: 10.17221/14/2015-JFS.10.17221/14/2015-JFSBaxter H.L., Mazarei M., Fu C., Cheng Q., Turner G.B., Sykes R.W., Windham M.T., Davis M.F., Dixon R.A., Wang Z.-Y., et al. Time course field analysis of COMT-downregulated switchgrass: Lignification, recalcitrance, and rust susceptibility. BioEnergy Res. 2016;9:1087–1100. doi: 10.1007/s12155-016-9751-1.10.1007/s12155-016-9751-1Xie C., Yang C. A review on plant high-throughput phenotyping traits using UAV-based sensors. Comput. Electron. Agr. 2020;178:105731. doi: 10.1016/j.compag.2020.105731.10.1016/j.compag.2020.105731Ludovisi R., Tauro F., Salvati R., Khoury S., Mugnozza Scarascia G., Harfouche A. UAV-based thermal imaging for high-throughput field phenotyping of black poplar response to drought. Front Plant Sci. 2017;8:1681. doi: 10.3389/fpls.2017.01681.10.3389/fpls.2017.01681PMC562395029021803Goggin F.L., Lorence A., Topp C.N. Applying high-throughput phenotyping to plant-insect interactions: Picturing more resistant crops. Curr. Opin. Insect. Sci. 2015;9:69–76. doi: 10.1016/j.cois.2015.03.002.10.1016/j.cois.2015.03.00232846711Moreira F.F., Oliveira H.R., Volenec J.J., Rainey K.M., Brito L.F. Integrating high-throughput phenotyping and statistical genomic methods to genetically improve longitudinal traits in crops. Front Plant Sci. 2020;11:681. doi: 10.3389/fpls.2020.00681.10.3389/fpls.2020.00681PMC726426632528513Mir R.R., Reynolds M., Pinto F., Khan M.A., Bhat M.A. High-throughput phenotyping for crop improvement in the genomics era. Plant Sci. 2019;282:60–72. doi: 10.1016/j.plantsci.2019.01.007.10.1016/j.plantsci.2019.01.00731003612Yang G., Liu J., Zhao C., Li Z., Huang Y., Yu H., Xu B., Yang X., Zhu D., Zhang X., et al. Unmanned aerial vehicle remote sensing for field-based crop phenotyping: Current status and perspectives. Front Plant Sci. 2017;30:8–1111. doi: 10.3389/fpls.2017.01111.10.3389/fpls.2017.01111PMC549285328713402Chawade A., van Ham J., Blomquist H., Bagge O., Alexandersson E., Ortiz R. High-throughput field-phenotyping tools for plant breeding and precision agriculture. Agronomy. 2019;9:258. doi: 10.3390/agronomy9050258.10.3390/agronomy9050258Sharma N., Schneider-Canny R., Chekhovskiy K., Kwon S., Saha M.C. Opportunities for increased nitrogen use efficiency in wheat for forage use. Plants. 2020;9:1738. doi: 10.3390/plants9121738.10.3390/plants9121738PMC776436133317031Coupel-Ledru A., Pallas B., Delalande M., Boudon F., Carrié E., Martinez S., Regnard J.-L., Costes E. Multi-scale high-throughput phenotyping of apple architectural and functional traits in orchard reveals genotypic variability under contrasted watering regimes. Hortic. Res. 2019;6:52. doi: 10.1038/s41438-019-0137-3.10.1038/s41438-019-0137-3PMC649148131044079Loladze A., Rodrigues F.A., Toledo F., San Vicente F., Gérard B., Boddupalli M.P. Application of remote sensing for phenotyping tar spot complex resistance in maize. Front Plant Sci. 2019;10 doi: 10.3389/fpls.2019.00552.10.3389/fpls.2019.00552PMC650311531114603Hastie T.J., Tibshirani R.J. Generalized Additive Models. Routledge; Abingdon, UK: 2017.Estes L.D., Bradley B.A., Beukes H., Hole D.G., Lau M., Oppenheimer M.G., Schulze R., Tadross M.A., Turner W.R. Comparing mechanistic and empirical model projections of crop suitability and productivity: Implications for ecological forecasting. Glob. Ecol. Biogeogr. 2013;22:1007–1018. doi: 10.1111/geb.12034.10.1111/geb.12034Austin M.P., Belbin L., Meyers J.A., Doherty M.D., Luoto M. Evaluation of statistical models used for predicting plant species distributions: Role of artificial data and theory. Ecol. Modell. 2006;199:197–216. doi: 10.1016/j.ecolmodel.2006.05.023.10.1016/j.ecolmodel.2006.05.023Yee T.W., Mitchell N.D. Generalized additive models in plant ecology. J. Veg. Sci. 1991;2:587–602. doi: 10.2307/3236170.10.2307/3236170Tulbure M.G., Wimberly M.C., Boe A., Owens V.N. Climatic and genetic controls of yields of switchgrass, a model bioenergy species. Agric. Ecosyst. Environ. 2012;146:121–129. doi: 10.1016/j.agee.2011.10.017.10.1016/j.agee.2011.10.017Tinarwo P., Zewotir T., Nort D. Modelling the effect of eucalyptus genotypes in the pulping process with generalised additive models and fractional polynomial approaches. Wood Res-Slovak. 2017;62:389–404.Wells J.M., Drielak E., Surendra K.C., Kumar Khanal S. Hot water pretreatment of lignocellulosic biomass: Modeling the effects of temperature, enzyme and biomass loadings on sugar yield. Bioresour. Technol. 2020;300:122593. doi: 10.1016/j.biortech.2019.122593.10.1016/j.biortech.2019.12259331881517Solanki H.U., Bhatpuria D., Chauhan P. Applications of generalized additive model (GAM) to satellite-derived variables and fishery data for prediction of fishery resources distributions in the Arabian Sea. Geocarto. Int. 2017;32:30–43. doi: 10.1080/10106049.2015.1120357.10.1080/10106049.2015.1120357
346810112022020720231213
2073-442512102021Oct14GenesGenes (Basel)Novel Candidate Genes Differentially Expressed in Glyphosate-Treated Horseweed (Conyza canadensis).161610.3390/genes12101616The evolution of herbicide-resistant weed species is a serious threat for weed control. Therefore, we need an improved understanding of how gene regulation confers herbicide resistance in order to slow the evolution of resistance. The present study analyzed differentially expressed genes after glyphosate treatment on a glyphosate-resistant Tennessee ecotype (TNR) of horseweed (Conyza canadensis), compared to a susceptible biotype (TNS). A read size of 100.2 M was sequenced on the Illumina platform and subjected to de novo assembly, resulting in 77,072 gene-level contigs, of which 32,493 were uniquely annotated by a BlastX alignment of protein sequence similarity. The most differentially expressed genes were enriched in the gene ontology (GO) term of the transmembrane transport protein. In addition, fifteen upregulated genes were identified in TNR after glyphosate treatment but were not detected in TNS. Ten of these upregulated genes were transmembrane transporter or kinase receptor proteins. Therefore, a combination of changes in gene expression among transmembrane receptor and kinase receptor proteins may be important for endowing non-target-site glyphosate-resistant C. canadensis.YangYongilY0000-0002-6925-5410Department of Plant Sciences, University of Tennessee, Knoxville, TN 37996, USA.Center for Agricultural Synthetic Biology, University of Tennessee, Knoxville, TN 37996, USA.GardnerCoryCProgram in Bioinformatics and Computational Biology, Saint Louis University, St. Louis, MO 63103, USA.GuptaPallaviP0000-0003-0146-239XProgram in Bioinformatics and Computational Biology, Saint Louis University, St. Louis, MO 63103, USA.MU Institute for Data Science and Informatics, University of Missouri, Columbia, MO 65211, USA.PengYanhuiYDepartment of Plant Sciences, University of Tennessee, Knoxville, TN 37996, USA.Centers for Disease Control and Prevention, 1600 Clifton Rd., Atlanta, GA 30333, USA.PiaseckiCristianoC0000-0002-2868-6863Department of Plant Sciences, University of Tennessee, Knoxville, TN 37996, USA.ATSI Brasil Pesquisa e Consultoria, Passo Fundo 99054-328, RS, Brazil.MillwoodReginald JRJDepartment of Plant Sciences, University of Tennessee, Knoxville, TN 37996, USA.AhnTae-HyukTH0000-0002-7281-9459Program in Bioinformatics and Computational Biology, Saint Louis University, St. Louis, MO 63103, USA.Department of Computer Science, Saint Louis University, St. Louis, MO 63103, USA.StewartC NealCNJr0000-0003-3026-9193Department of Plant Sciences, University of Tennessee, Knoxville, TN 37996, USA.Center for Agricultural Synthetic Biology, University of Tennessee, Knoxville, TN 37996, USA.engJournal Article20211014
SwitzerlandGenes (Basel)1015510972073-44250DNA, Plant0HerbicidesTE7660XO1CGlycineIMComputational BiologyConyzadrug effectsgeneticsDNA, PlantGenes, PlantGlycineanalogs & derivativespharmacologyHerbicide ResistancegeneticsHerbicidespharmacologySequence Analysis, DNAmethodsTranscriptomeWeed ControlmethodsGlyphosateABC transporterCYP450Conyza canadensisdifferentially expressed gene analysisglyphosatemembrane-bound protein kinasenon-target-site-based resistanceThe authors declare no conflict of interest.
202181320219202021108202110231620211024602022286020211014epublish34681011PMC853590310.3390/genes12101616genes12101616Duke S.O. The history and current status of glyphosate. Pest Manag. Sci. 2018;74:1027–1034. doi: 10.1002/ps.4652.10.1002/ps.465228643882Amrhein N., Deus B., Gehrke P., Steinrucken H.C. The site of the inhibition of the shikimate pathway by glyphosate: II. Interference of glyphosate with chorismate formation in vivo and in vitro. Plant Physiol. 1980;66:830–834. doi: 10.1104/pp.66.5.830.10.1104/pp.66.5.830PMC44073516661535Steinrucken H.C., Amrhein N. The herbicide glyphosate is a potent inhibitor of 5-enolpyruvyl-shikimic acid-3-phosphate synthase. Biochem. Biophys. Res. Commun. 1980;94:1207–1212. doi: 10.1016/0006-291X(80)90547-1.10.1016/0006-291X(80)90547-17396959Pratley J., Urwin N., Stanton R., Baines P., Broster J., Cullis K., Schafer D., Bohn J., Krueger R. Resistance to glyphosate in Lolium rigidum. I. Bioevaluation. Weed Sci. 1999;47:405–411. doi: 10.1017/S0043174500091992.10.1017/S0043174500091992Heap I., Duke S.O. Overview of glyphosate-resistant weeds worldwide. Pest Manag. Sci. 2018;74:1040–1049. doi: 10.1002/ps.4760.10.1002/ps.476029024306Wechsler S.J., McFadden J.R., Smith D.J. What do farmers’ weed control decisions imply about glyphosate resistance? Evidence from surveys of US corn fields. Pest Manag. Sci. 2018;74:1143–1154. doi: 10.1002/ps.4598.10.1002/ps.459828444878Heap I. Global perspective of herbicide-resistant weeds. Pest Manag. Sci. 2014;70:1306–1315. doi: 10.1002/ps.3696.10.1002/ps.369624302673Sammons R.D., Gaines T.A. Glyphosate resistance: State of knowledge. Pest Manag. Sci. 2014;70:1367–1377. doi: 10.1002/ps.3743.10.1002/ps.3743PMC426017225180399Delye C. Unravelling the genetic bases of non-target-site-based resistance (NTSR) to herbicides: A major challenge for weed science in the forthcoming decade. Pest Manag. Sci. 2013;69:176–187. doi: 10.1002/ps.3318.10.1002/ps.331822614948Bell M.S., Hager A.G., Tranel P.J. Multiple resistance to herbicides from four site-of-action groups in waterhemp (Amaranthus tuberculatus) Weed Sci. 2013;61:460–468. doi: 10.1614/WS-D-12-00166.1.10.1614/WS-D-12-00166.1Nandula V.K., Ray J.D., Ribeiro D.N., Pan Z., Reddy K.N. Glyphosate resistance in tall waterhemp (Amaranthus tuberculatus) from Mississippi is due to both altered target-site and nontarget-site mechanisms. Weed Sci. 2013;61:374–383. doi: 10.1614/WS-D-12-00155.1.10.1614/WS-D-12-00155.1Moretti M.L., Alarcon-Reverte R., Pearce S., Morran S., Hanson B.D. Transcription of putative tonoplast transporters in response to glyphosate and paraquat stress in Conyza bonariensis and Conyza canadensis and selection of reference genes for qRT-PCR. PLoS ONE. 2017;12:e0180794. doi: 10.1371/journal.pone.0180794.10.1371/journal.pone.0180794PMC550726628700644Hereward J.P., Werth J.A., Thornby D.F., Keenan M., Chauhan B.S., Walter G.H. Gene expression in response to glyphosate treatment in fleabane (Conyza bonariensis)—glyphosate death response and candidate resistance genes. Pest Manag. Sci. 2018;74:2346–2355. doi: 10.1002/ps.4804.10.1002/ps.480429193675Piasecki C., Yang Y., Benemann D.P., Kremer F.S., Galli V., Millwood R.J., Cechin J., Agostinetto D., Maia L.C., Vargas L., et al. Transcriptomic analysis identifies new non-target site glyphosate-resistance genes in Conyza bonariensis. Plants. 2019;8:157. doi: 10.3390/plants8060157.10.3390/plants8060157PMC663084231181629Alcantara-de la Cruz R., Rojano-Delgado A.M., Gimenez M.J., Cruz-Hipolito H.E., Dominguez-Valenzuela J.A., Barro F., De Prado R. First resistance mechanisms characterization in glyphosate-resistant Leptochloa virgata. Front. Plant Sci. 2016;7:1742. doi: 10.3389/fpls.2016.01742.10.3389/fpls.2016.01742PMC511430827917189Brunharo C.A., Patterson E.L., Carrijo D.R., de Melo M.S., Nicolai M., Gaines T.A., Nissen S.J., Christoffoleti P.J. Confirmation and mechanism of glyphosate resistance in tall windmill grass (Chloris elata) from Brazil. Pest Manag. Sci. 2016;72:1758–1764. doi: 10.1002/ps.4205.10.1002/ps.420526662356Vila-Aiub M.M., Balbi M.C., Distefano A.J., Fernandez L., Hopp E., Yu Q., Powles S.B. Glyphosate resistance in perennial Sorghum halepense (Johnsongrass), endowed by reduced glyphosate translocation and leaf uptake. Pest Manag. Sci. 2012;68:430–436. doi: 10.1002/ps.2286.10.1002/ps.228621953884Ge X., d’Avignon D.A., Ackerman J.J., Collavo A., Sattin M., Ostrander E.L., Hall E.L., Sammons R.D., Preston C. Vacuolar glyphosate-sequestration correlates with glyphosate resistance in ryegrass (Lolium spp.) from Australia, South America, and Europe: A 31P NMR investigation. J. Agric. Food Chem. 2012;60:1243–1250. doi: 10.1021/jf203472s.10.1021/jf203472s22224711Ge X., d’Avignon D.A., Ackerman J.J., Sammons R.D. Rapid vacuolar sequestration: The horseweed glyphosate resistance mechanism. Pest Manag. Sci. 2010;66:345–348. doi: 10.1002/ps.1911.10.1002/ps.1911PMC308009720063320Ge X., d’Avignon D.A., Ackerman J.J., Sammons R.D. In vivo 31P-nuclear magnetic resonance studies of glyphosate uptake, vacuolar sequestration, and tonoplast pump activity in glyphosate-resistant horseweed. Plant Physiol. 2014;166:1255–1268. doi: 10.1104/pp.114.247197.10.1104/pp.114.247197PMC422638425185124Peng Y., Abercrombie L.L., Yuan J.S., Riggins C.W., Sammons R.D., Tranel P.J., Stewart C.N., Jr. Characterization of the horseweed (Conyza canadensis) transcriptome using GS-FLX 454 pyrosequencing and its application for expression analysis of candidate non-target herbicide resistance genes. Pest Manag. Sci. 2010;66:1053–1062. doi: 10.1002/ps.2004.10.1002/ps.200420715018Tani E., Chachalis D., Travlos I.S., Bilalis D. Environmental conditions influence induction of key ABC-transporter genes affecting glyphosate resistance mechanism in Conyza canadensis. Int. J. Mol. Sci. 2016;17:342. doi: 10.3390/ijms17040342.10.3390/ijms17040342PMC484887927104532Laforest M., Martin S.L., Bisaillon K., Soufiane B., Meloche S., Page E. A chromosome-scale draft sequence of the Canada fleabane genome. Pest Manag. Sci. 2020;76:2158–2169. doi: 10.1002/ps.5753.10.1002/ps.575331951071Peng Y., Lai Z., Lane T., Nageswara-Rao M., Okada M., Jasieniuk M., O’Geen H., Kim R.W., Sammons R.D., Rieseberg L.H., et al. De novo genome assembly of the economically important weed horseweed using integrated data from multiple sequencing platforms. Plant Physiol. 2014;166:1241–1254. doi: 10.1104/pp.114.247668.10.1104/pp.114.247668PMC422636625209985Ewels P., Magnusson M., Lundin S., Kaller M. MultiQC: Summarize analysis results for multiple tools and samples in a single report. Bioinformatics. 2016;32:3047–3048. doi: 10.1093/bioinformatics/btw354.10.1093/bioinformatics/btw354PMC503992427312411Grabherr M.G., Haas B.J., Yassour M., Levin J.Z., Thompson D.A., Amit I., Adiconis X., Fan L., Raychowdhury R., Zeng Q., et al. Full-length transcriptome assembly from RNA-Seq data without a reference genome. Nat. Biotechnol. 2011;29:644–652. doi: 10.1038/nbt.1883.10.1038/nbt.1883PMC357171221572440NCBI Resource Coordinators Database resources of the National Center for Biotechnology. Nucleic Acids Res. 2016;44:D7–D19. doi: 10.1093/nar/gkv1290.10.1093/nar/gkv1290PMC470291126615191Langmead B., Salzberg S.L. Fast gapped-read alignment with Bowtie 2. Nat. Methods. 2012;9:357–359. doi: 10.1038/nmeth.1923.10.1038/nmeth.1923PMC332238122388286Li B., Dewey C.N. RSEM: Accurate transcript quantification from RNA-Seq data with or without a reference genome. BMC Bioinformatics. 2011;12:323. doi: 10.1186/1471-2105-12-323.10.1186/1471-2105-12-323PMC316356521816040RStudio Team . RStudio: Integrated Development for R. RStudio Inc.; Boston, MA, USA: 2020. [(accessed on 28 June 2021)]. Available online: http://www.rsutdio.com/Robinson M.D., McCarthy D.J., Smyth G.K. EdgeR: A bioconductor package for differential expression analysis of digital gene expression data. Bioinformatics. 2010;26:139–140. doi: 10.1093/bioinformatics/btp616.10.1093/bioinformatics/btp616PMC279681819910308Livak K.J., Schmittgen T.D. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-delta delta C(T)) method. Methods. 2001;25:402–408. doi: 10.1006/meth.2001.1262.10.1006/meth.2001.126211846609Li H. Minimap2: Pairwise alignment for nucleotide sequences. Bioinformatics. 2018;34:3094–3100. doi: 10.1093/bioinformatics/bty191.10.1093/bioinformatics/bty191PMC613799629750242Huang D.W., Sherman B.T., Lempicki R.A. Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources. Nat. Protoc. 2009;4:44–57. doi: 10.1038/nprot.2008.211.10.1038/nprot.2008.21119131956Perotti V.E., Larran A.S., Palmieri V.E., Martinatto A.K., Permingeat H.R. Herbicide resistant weeds: A call to integrate conventional agricultural practices, molecular biology knowledge and new technologies. Plant Sci. 2020;290:110255. doi: 10.1016/j.plantsci.2019.110255.10.1016/j.plantsci.2019.11025531779903Duhoux A., Carrere S., Gouzy J., Bonin L., Delye C. RNA-Seq analysis of rye-grass transcriptomic response to an herbicide inhibiting acetolactate-synthase identifies transcripts linked to non-target-site-based resistance. Plant Mol. Biol. 2015;87:473–487. doi: 10.1007/s11103-015-0292-3.10.1007/s11103-015-0292-325636204Gaines T.A., Lorentz L., Figge A., Herrmann J., Maiwald F., Ott M.C., Han H., Busi R., Yu Q., Powles S.B., et al. RNA-Seq transcriptome analysis to identify genes involved in metabolism-based diclofop resistance in Lolium rigidum. Plant J. 2014;78:865–876. doi: 10.1111/tpj.12514.10.1111/tpj.1251424654891Iwakami S., Uchino A., Kataoka Y., Shibaike H., Watanabe H., Inamura T. Cytochrome P450 genes induced by bispyribac-sodium treatment in a multiple-herbicide-resistant biotype of Echinochloa phyllopogon. Pest Manag. Sci. 2014;70:549–558. doi: 10.1002/ps.3572.10.1002/ps.357223650123Pan L., Gao H., Xia W., Zhang T., Dong L. Establishing a herbicide-metabolizing enzyme library in Beckmannia syzigachne to identify genes associated with metabolic resistance. J. Exp. Bot. 2016;67:1745–1757. doi: 10.1093/jxb/erv565.10.1093/jxb/erv56526739863Zhao N., Yan Y., Ge L., Zhu B., Liu W., Wang J. Target site mutations and cytochrome P450s confer resistance to fenoxaprop-P-ethyl and mesosulfuron-methyl in Alopecurus aequalis. Pest Manag. Sci. 2019;75:204–214. doi: 10.1002/ps.5089.10.1002/ps.508929808621Leslie T., Baucom R.S. De novo assembly and annotation of the transcriptome of the agricultural weed Ipomoea purpurea uncovers gene expression changes associated with herbicide resistance. G3 Genes Genomes Genet. 2014;4:2035–2047. doi: 10.1534/g3.114.013508.10.1534/g3.114.013508PMC419970925155274Conte S.S., Lloyd A.M. Exploring multiple drug and herbicide resistance in plants-spotlight on transporter proteins. Plant Sci. 2011;180:196–203. doi: 10.1016/j.plantsci.2010.10.015.10.1016/j.plantsci.2010.10.01521421361Tan E., Demosthenis C., Ilias S.T. A glyphosate resistance mechanism in Conyza canadensis involves synchronization of EPSPS and ABC-transporter genes. Plant Mol. Biol. Rep. 2015;33:1721–1730. doi: 10.1007/s11105-015-0868-8.10.1007/s11105-015-0868-8Sun Y., Qiao Z., Muchero W., Chen J.G. Lectin receptor-like kinases: The sensor and mediator at the plant cell surface. Front. Plant Sci. 2020;11:596301. doi: 10.3389/fpls.2020.596301.10.3389/fpls.2020.596301PMC775839833362827Teixeira M.A., Rajewski A., He J., Castaneda O.G., Litt A., Kaloshian I. Classification and phylogenetic analyses of the Arabidopsis and tomato G-type lectin receptor kinases. BMC Genom. 2018;19:239. doi: 10.1186/s12864-018-4606-0.10.1186/s12864-018-4606-0PMC588954929625550Yang Y., Labbe J., Muchero W., Yang X., Jawdy S.S., Kennedy M., Johnson J., Sreedasyam A., Schmutz J., Tuskan G.A., et al. Genome-wide analysis of lectin receptor-like kinases in Populus. BMC Genom. 2016;17:699. doi: 10.1186/s12864-016-3026-2.10.1186/s12864-016-3026-2PMC500769927580945Fuchs B., Saikkonen K., Helander M. Glyphosate-modulated biosynthesis driving plant defense and species interactions. Trends Plant Sci. 2021;26:312–323. doi: 10.1016/j.tplants.2020.11.004.10.1016/j.tplants.2020.11.00433277187Bonaventure G. The Nicotiana attenuata Lectin receptor kinase 1 is involved in the perception of insect feeding. Plant Signal. Behav. 2011;6:2060–2063. doi: 10.4161/psb.6.12.18324.10.4161/psb.6.12.18324PMC335624322105024Gilardoni P.A., Hettenhausen C., Baldwin I.T., Bonaventure G. Nicotiana attenuata Lectin receptor kinase1 suppresses the insect-mediated inhibition of induced defense responses during Manduca sexta herbivory. Plant Cell. 2011;23:3512–3532. doi: 10.1105/tpc.111.088229.10.1105/tpc.111.088229PMC320344321926334Pan L., Yu Q., Wang J., Han H., Mao L., Nyporko A., Maguza A., Fan L., Bai L., Powles S. An ABCC-type transporter endowing glyphosate resistance in plants. Proc. Natl. Acad. Sci. USA. 2021;118:e2100136118. doi: 10.1073/pnas.2100136118.10.1073/pnas.2100136118PMC807233133846264
345858342022041320220413
1467-76522022022FebPlant biotechnology journalPlant Biotechnol JMini-synplastomes for plastid genetic engineering.360373360-37310.1111/pbi.13717In the age of synthetic biology, plastid engineering requires a nimble platform to introduce novel synthetic circuits in plants. While effective for integrating relatively small constructs into the plastome, plastid engineering via homologous recombination of transgenes is over 30 years old. Here we show the design-build-test of a novel synthetic genome structure that does not disturb the native plastome: the 'mini-synplastome'. The mini-synplastome was inspired by dinoflagellate plastome organization, which is comprised of numerous minicircles residing in the plastid instead of a single organellar genome molecule. The first mini-synplastome in plants was developed in vitro to meet the following criteria: (i) episomal replication in plastids; (ii) facile cloning; (iii) predictable transgene expression in plastids; (iv) non-integration of vector sequences into the endogenous plastome; and (v) autonomous persistence in the plant over generations in the absence of exogenous selection pressure. Mini-synplastomes are anticipated to revolutionize chloroplast biotechnology, enable facile marker-free plastid engineering, and provide an unparalleled platform for one-step metabolic engineering in plants.© 2021 The Authors. Plant Biotechnology Journal published by Society for Experimental Biology and The Association of Applied Biologists and John Wiley & Sons Ltd.OcchialiniAlessandroADepartment of Food Science, University of Tennessee, Knoxville, TN, USA.Center for Agricultural Synthetic Biology, University of Tennessee Institute of Agriculture, Knoxville, TN, USA.PfotenhauerAlexander CACDepartment of Food Science, University of Tennessee, Knoxville, TN, USA.Center for Agricultural Synthetic Biology, University of Tennessee Institute of Agriculture, Knoxville, TN, USA.LiLiLDepartment of Food Science, University of Tennessee, Knoxville, TN, USA.Center for Agricultural Synthetic Biology, University of Tennessee Institute of Agriculture, Knoxville, TN, USA.HarbisonStacee ASACenter for Agricultural Synthetic Biology, University of Tennessee Institute of Agriculture, Knoxville, TN, USA.Department of Plant Sciences, University of Tennessee, Knoxville, TN, USA.LailAndrew JAJCenter for Agricultural Synthetic Biology, University of Tennessee Institute of Agriculture, Knoxville, TN, USA.Department of Plant Sciences, University of Tennessee, Knoxville, TN, USA.BurrisJason NJNDepartment of Food Science, University of Tennessee, Knoxville, TN, USA.Center for Agricultural Synthetic Biology, University of Tennessee Institute of Agriculture, Knoxville, TN, USA.PiaseckiCristianoCDepartment of Plant Sciences, University of Tennessee, Knoxville, TN, USA.PiatekAgnieszka AAADepartment of Plant Sciences, University of Tennessee, Knoxville, TN, USA.DaniellHenryH0000-0003-4485-1176Department of Basic and Translational Sciences, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA, USA.StewartC NealCNJr0000-0003-3026-9193Center for Agricultural Synthetic Biology, University of Tennessee Institute of Agriculture, Knoxville, TN, USA.Department of Plant Sciences, University of Tennessee, Knoxville, TN, USA.LenaghanScott CSC0000-0002-7539-1726Department of Food Science, University of Tennessee, Knoxville, TN, USA.Center for Agricultural Synthetic Biology, University of Tennessee Institute of Agriculture, Knoxville, TN, USA.engJournal ArticleResearch Support, Non-U.S. Gov'tResearch Support, U.S. Gov't, Non-P.H.S.20211024
EnglandPlant Biotechnol J1012018891467-7644IMGenetic EngineeringMetabolic EngineeringPlantsgeneticsPlastidsgeneticsSynthetic BiologyTransgenesSolanum tuberosumepisomal replicationhomologous recombinationplastid engineeringplastomesmall synthetic plastome ‘mini-synplastome’The authors declare no competing interests.
20219820215242021925202193060202241460202192985920211024ppublish34585834PMC875336210.1111/pbi.13717Barbrook, A.C. , Dorrell, R.G. , Burrows, J. , Plenderleith, L.J. , Nisbet, R.E. and Howe, C.J. (2012) Polyuridylylation and processing of transcripts from multiple gene minicircles in chloroplasts of the dinoflagellate Amphidinium carterae . Plant Mol. Biol. 79, 347–357.22562591Barbrook, A.C. and Howe, C.J. (2000) Minicircular plastid DNA in the dinoflagellate Amphidinium operculatum . Mol. Gen. Genet. 263, 152–158.10732684Carrillo, N. and Bogorad, L. (1988) Chloroplast DNA replication in vitro: site‐specific initiation from preferred templates. Nucleic Acids Res. 16, 5603–5620.PMC3367872838823Chan, H.T. , Xiao, Y. , Weldon, W.C. , Oberste, S.M. , Chumakov, K. and Daniell, H. (2016) Cold chain and virus‐free chloroplast‐made booster vaccine to confer immunity against different poliovirus serotypes. Plant Biotechnol. J. 14, 2190–2200.PMC505680327155248Chiu, W.L. and Sears, B.B. (1992) Electron microscopic localization of replication origins in Oenothera chloroplast DNA. Mol. Gen. Genet. 232, 33–39.1552900Corneille, S. , Lutz, K. , Svab, Z. and Maliga, P. (2001) Efficient elimination of selectable marker genes from the plastid genome by the CRE‐lox site‐specific recombination system. Plant J. 27, 171–178.11489194Daniell, H. , Datta, R. , Varma, S. , Gray, S. and Lee, S.B. (1998) Containment of herbicide resistance through genetic engineering of the chloroplast genome. Nat. Biotechnol. 16, 345–348.PMC55227139555724Daniell, H. , Lee, S.B. , Grevich, J. , Saski, C. , Quesada‐Vargas, T. , Guda, C. , Tomkins, J. et al. (2006) Complete chloroplast genome sequences of Solanum bulbocastanum, Solanum lycopersicum and comparative analyses with other Solanaceae genomes. Theor. Appl. Genet. 112, 1503–1518.16575560Daniell, H. , Lin, C.S. , Yu, M. and Chang, W.J. (2016) Chloroplast genomes: diversity, evolution, and applications in genetic engineering. Genome Biol. 17, 134.PMC491820127339192Daniell, H. , Mangu, V. , Yakubov, B. , Park, J. , Habibi, P. , Shi, Y. , Gonnella, P.A. et al. (2020) Investigational new drug enabling angiotensin oral‐delivery studies to attenuate pulmonary hypertension. Biomaterials, 233, 119750.PMC704591031931441Daniell, H. , Rai, V. and Xiao, Y. (2019a) Cold chain and virus‐free oral polio booster vaccine made in lettuce chloroplasts confers protection against all three poliovirus serotypes. Plant Biotechnol. J. 17, 1357–1368.PMC657610030575284Daniell, H. , Ribeiro, T. , Lin, S. , Saha, P. , McMichael, C. , Chowdhary, R. and Agarwal, A. (2019b) Validation of leaf and microbial pectinases: commercial launching of a new platform technology. Plant Biotechnol. J. 17, 1154–1166.PMC652360230963657Daniell, H. , Vivekananda, J. , Nielsen, B.L. , Ye, G.N. , Tewari, K.K. and Sanford, J.C. (1990) Transient foreign gene expression in chloroplasts of cultured tobacco cells after biolistic delivery of chloroplast vectors. Proc. Natl Acad. Sci. USA, 87, 88–92.PMC532052404285Day, A. and Madesis, P. (2007) DNA replication, recombination, and repair in plastids. In Cell and Molecular Biology of Plastids ( Bock, R. , ed), pp. 65–119. Berlin, Heidelberg: Springer, Berlin Heidelberg.De Cosa, B. , Moar, W. , Lee, S.B. , Miller, M. and Daniell, H. (2001) Overexpression of the Bt cry2Aa2 operon in chloroplasts leads to formation of insecticidal crystals. Nat. Biotechnol. 19, 71–74.PMC456009611135556Dufourmantel, N. , Dubald, M. , Matringe, M. , Canard, H. , Garcon, F. , Job, C. , Kay, E. et al. (2007) Generation and characterization of soybean and marker‐free tobacco plastid transformants over‐expressing a bacterial 4‐hydroxyphenylpyruvate dioxygenase which provides strong herbicide tolerance. Plant Biotechnol. J. 5, 118–133.17207262Fox, J.L. (2012) First plant‐made biologic approved. Nat. Biotechnol. 30, 472.Gray, B.N. , Ahner, B.A. and Hanson, M.R. (2009) Extensive homologous recombination between introduced and native regulatory plastid DNA elements in transplastomic plants. Transgenic Res. 18, 559–572.19184502Guda, C. , Lee, S.B. and Daniell, H. (2000) Stable expression of a biodegradable protein‐based polymer in tobacco chloroplasts. Plant Cell Rep. 19, 257–262.30754904Hajdukiewicz, P.T. , Gilbertson, L. and Staub, J.M. (2001) Multiple pathways for Cre/lox‐mediated recombination in plastids. Plant J. 27, 161–170.11489193Howe, C.J. , Barbrook, A.C. , Koumandou, V.L. , Nisbet, R.E. , Symington, H.A. and Wightman, T.F. (2003) Evolution of the chloroplast genome. Philos. Trans. R. Soc. Lond. B. Biol. Sci, 358, 99–107. discussion 106–107.PMC169310112594920Howe, C.J. , Nisbet, R.E. and Barbrook, A.C. (2008) The remarkable chloroplast genome of dinoflagellates. J. Exp. Bot. 59, 1035–1045.18319241Iamtham, S. and Day, A. (2000) Removal of antibiotic resistance genes from transgenic tobacco plastids. Nat. Biotechnol. 18, 1172–1176.11062436Karas, B.J. , Diner, R.E. , Lefebvre, S.C. , McQuaid, J. , Phillips, A.P. , Noddings, C.M. , Brunson, J.K. et al. (2015) Designer diatom episomes delivered by bacterial conjugation. Nat. Commun. 6, 6925.PMC441128725897682Klaus, S.M. , Huang, F.C. , Golds, T.J. and Koop, H.U. (2004) Generation of marker‐free plastid transformants using a transiently cointegrated selection gene. Nat. Biotechnol. 22, 225–229.14730316Koressaar, T. and Remm, M. (2007) Enhancements and modifications of primer design program Primer3. Bioinformatics, 23, 1289–1291.17379693Kota, M. , Daniell, H. , Varma, S. , Garczynski, S.F. , Gould, F. and Moar, W.J. (1999) Overexpression of the Bacillus thuringiensis (Bt) Cry2Aa2 protein in chloroplasts confers resistance to plants against susceptible and Bt‐resistant insects. Proc. Natl Acad. Sci. USA, 96, 1840–1845.PMC2669810051556Koumandou, V.L. and Howe, C.J. (2007) The copy number of chloroplast gene minicircles changes dramatically with growth phase in the dinoflagellate Amphidinium operculatum . Protist, 158, 89–103.17049921Krichevsky, A. , Meyers, B. , Vainstein, A. , Maliga, P. and Citovsky, V. (2010) Autoluminescent plants. PLoS One, 5, e15461.PMC298049621103397Krishnan, N.M. and Rao, B.J. (2009) A comparative approach to elucidate chloroplast genome replication. BMC Genom. 10, 237.PMC269548519457260Kumar, S. , Hahn, F.M. , Baidoo, E. , Kahlon, T.S. , Wood, D.F. , McMahan, C.M. , Cornish, K. et al. (2012) Remodeling the isoprenoid pathway in tobacco by expressing the cytoplasmic mevalonate pathway in chloroplasts. Metab. Eng. 14, 19–28.PMC576733622123257Kumari, U. , Singh, R. , Ray, T. , Rana, S. , Saha, P. , Malhotra, K. and Daniell, H. (2019) Validation of leaf enzymes in the detergent and textile industries: launching of a new platform technology. Plant Biotechnol. J. 17, 1167–1182.PMC652360930963679Kunnimalaiyaan, M. and Nielsen, B.L. (1997) Fine mapping of replication origins (oriA and oriB) in Nicotiana tabacum chloroplast DNA. Nucleic Acids Res. 25, 3681–3686.PMC1469479278490Kwon, K.C. , Chan, H.T. , León, I.R. , Williams‐Carrier, R. , Barkan, A. and Daniell, H. (2016) Codon optimization to enhance expression yields insights into chloroplast translation. Plant Physiol. 172, 62–77.PMC507461127465114Kwon, K.C. , Sherman, A. , Chang, W.J. , Kamesh, A. , Biswas, M. , Herzog, R.W. and Daniell, H. (2018) Expression and assembly of largest foreign protein in chloroplasts: oral delivery of human FVIII made in lettuce chloroplasts robustly suppresses inhibitor formation in haemophilia A mice. Plant Biotechnol. J. 16, 1148–1160.PMC593667829106782Kwon, K.C. , Verma, D. , Jin, S. , Singh, N.D. and Daniell, H. (2013) Release of proteins from intact chloroplasts induced by reactive oxygen species during biotic and abiotic stress. PLoS One, 8, e67106.PMC368295923799142Lin, M.T. , Occhialini, A. , Andralojc, P.J. , Parry, M.A. and Hanson, M.R. (2014) A faster Rubisco with potential to increase photosynthesis in crops. Nature, 513, 547–550.PMC417697725231869Lu, Y. , Rijzaani, H. , Karcher, D. , Ruf, S. and Bock, R. (2013) Efficient metabolic pathway engineering in transgenic tobacco and tomato plastids with synthetic multigene operons. Proc. Natl Acad. Sci. USA, 110, E623–632.PMC358196623382222Lugo, S.K. , Kunnimalaiyaan, M. , Singh, N.K. and Nielsen, B.L. (2004) Required sequence elements for chloroplast DNA replication activity in vitro and in electroporated chloroplasts. Plant Sci. 166, 151–161.Malhotra, K. , Subramaniyan, M. , Rawat, K. , Kalamuddin, M. , Qureshi, M.I. , Malhotra, P. , Mohmmed, A. et al. (2016) Compartmentalized metabolic engineering for artemisinin biosynthesis and effective malaria treatment by oral delivery of plant cells. Mol. Plant. 9, 1464–1477.PMC598023627773616Martin Avila, E. , Gisby, M.F. and Day, A. (2016) Seamless editing of the chloroplast genome in plants. BMC Plant Biol. 16, 168.PMC496672527474038Meeker, R. , Nielsen, B. and Tewari, K.K. (1988) Localization of replication origins in pea chloroplast DNA. Mol. Cell. Biol. 8, 1216–1223.PMC3632662835665Min, S.R. , Davarpanah, S.J. , Jung, S.H. , Park, Y. , Liu, J.R. and Jeong, W.J. (2015a) An episomal vector system for plastid transformation in higher plants. Plant Biotechnol. Rep. 9, 443–449.Min, S.R. , Jung, S.H. , Liu, J.R. and Jeong, W.J. (2015b) The fate of extrachromosomal DNAs in the progeny of plastid‐transformed tobacco plants. Plant Biotechnol. Rep. 9, 431–442.Mühlbauer, S.K. , Lössl, A. , Tzekova, L. , Zou, Z. and Koop, H.U. (2002) Functional analysis of plastid DNA replication origins in tobacco by targeted inactivation. Plant J. 32, 175–184.12383083Nielsen, B.L. , Lu, Z. and Tewari, K.K. (1993) Characterization of the pea chloroplast DNA oriA region. Plasmid, 30, 197–211.8302928Nielsen, B.L. and Tewari, K.K. (1988) Pea chloroplast topoisomerase I: purification, characterization, and role in replication. Plant Mol. Biol. 11, 3–14.24272153Nisbet, R.E. , Koumandou, L. , Barbrook, A.C. and Howe, C.J. (2004) Novel plastid gene minicircles in the dinoflagellate Amphidinium operculatum . Gene, 331, 141–147.15094200Norrander, J. , Kempe, T. and Messing, J. (1983) Construction of improved M13 vectors using oligodeoxynucleotide‐directed mutagenesis. Gene, 26, 101–106.6323249Occhialini, A. , Lin, M.T. , Andralojc, P.J. , Hanson, M.R. and Parry, M.A. (2016) Transgenic tobacco plants with improved cyanobacterial Rubisco expression but no extra assembly factors grow at near wild‐type rates if provided with elevated CO2 . Plant J. 85, 148–160.PMC471875326662726Occhialini, A. , Pfotenhauer, A.C. , Frazier, T.P. , Li, L. , Harbison, S.A. , Lail, A.J. , Mebane, Z. et al. (2020) Generation, analysis, and transformation of macro‐chloroplast potato (Solanum tuberosum) lines for chloroplast biotechnology. Sci. Rep. 10, 21144.PMC771340133273600Occhialini, A. , Piatek, A.A. , Pfotenhauer, A.C. , Frazier, T.P. , Stewart, C.N. Jr and Lenaghan, S.C. (2019) MoChlo: a versatile modular cloning toolbox for chloroplast biotechnology. Plant Physiol. 179, 943–957.PMC639378730679266Park, J. , Yan, G. , Kwon, K.C. , Liu, M. , Gonnella, P.A. , Yang, S. and Daniell, H. (2020) Oral delivery of novel human IGF‐1 bioencapsulated in lettuce cells promotes musculoskeletal cell proliferation, differentiation and diabetic fracture healing. Biomaterials, 233, 119591.PMC699063231870566Ruf, S. , Karcher, D. and Bock, R. (2007) Determining the transgene containment level provided by chloroplast transformation. Proc. Natl Acad. Sci. USA, 104, 6998–7002.PMC184996417420459Ruhlman, T. , Verma, D. , Samson, N. and Daniell, H. (2010) The role of heterologous chloroplast sequence elements in transgene integration and expression. Plant Physiol. 152, 2088–2104.PMC285003520130101Shinozaki, K. , Ohme, M. , Tanaka, M. , Wakasugi, T. , Hayashida, N. , Matsubayashi, T. , Zaita, N. et al. (1986) The complete nucleotide sequence of the tobacco chloroplast genome: its gene organization and expression. EMBO J. 5, 2043–2049.PMC116708016453699Singh, R. , Ren, Z. , Shi, Y. , Lin, S. , Kwon, K. , Balamurugan, S. , Rai, V. et al. (2021) Affordable oral health care: dental biofilm disruption using chloroplast made enzymes with chewing gum delivery. Plant Biotechnol. J. 19(10), 2113–2125.PMC848624634076337Staub, J.M. and Maliga, P. (1994) Extrachromosomal elements in tobacco plastids. Proc. Natl Acad. Sci. USA, 91, 7468–7472.PMC444228052605Staub, J.M. and Maliga, P. (1995) Marker rescue from the Nicotiana tabacum plastid genome using a plastid/Escherichia coli shuttle vector. Mol. Gen. Genet, 249, 37–42.8552031Svab, Z. , Hajdukiewicz, P. and Maliga, P. (1990) Stable transformation of plastids in higher plants. Proc. Natl Acad. Sci. USA, 87, 8526–8530.PMC5498911607112Svab, Z. and Maliga, P. (1993) High‐frequency plastid transformation in tobacco by selection for a chimeric aadA gene. Proc. Natl Acad. Sci. USA, 90, 913–917.PMC457808381537Svab, Z. and Maliga, P. (2007) Exceptional transmission of plastids and mitochondria from the transplastomic pollen parent and its impact on transgene containment. Proc. Natl Acad. Sci. USA, 104, 7003–7008.PMC184996317420457Untergasser, A. , Cutcutache, I. , Koressaar, T. , Ye, J. , Faircloth, B.C. , Remm, M. and Rozen, S.G. (2012) Primer3–new capabilities and interfaces. Nucleic Acids Res. 40, e115.PMC342458422730293Valkov, V.T. , Gargano, D. , Manna, C. , Formisano, G. , Dix, P.J. , Gray, J.C. , Scotti, N. et al. (2011) High efficiency plastid transformation in potato and regulation of transgene expression in leaves and tubers by alternative 5' and 3' regulatory sequences. Transgenic Res. 20, 137–151.20464632Vickery, B.P. , Vereda, A. , Casale, T.B. , Beyer, K. , du Toit, G. , Hourihane, J.O. , Jones, S.M. et al. (2018) AR101 oral immunotherapy for peanut allergy. N. Engl. J. Med. 379, 1991–2001.30449234Waddell, J. , Wang, X.M. and Wu, M. (1984) Electron microscopic localization of the chloroplast DNA replicative origins in Chlamydomonas reinhardii . Nucleic Acids Res. 12, 3843–3856.PMC3187946328440Wang, X.M. , Chang, C.H. , Waddell, J. and Wu, M. (1984) Cloning and delimiting one chloroplast DNA replicative origin of Chlamydomonas . Nucleic Acids Res, 2, 3857–3872.PMC3187956328441Xiao, Y. and Daniell, H. (2017) Long‐term evaluation of mucosal and systemic immunity and protection conferred by different polio booster vaccines. Vaccine, 35, 5418–5425.PMC551736228111147Zhang, J. , Khan, S.A. , Hasse, C. , Ruf, S. , Heckel, D.G. and Bock, R. (2015) Pest control. Full crop protection from an insect pest by expression of long double‐stranded RNAs in plastids. Science, 347, 991–994.25722411
3319351120201117
1664-462X112020Frontiers in plant scienceFront Plant SciHigh-Throughput Switchgrass Phenotyping and Biomass Modeling by UAV.57407357407357407310.3389/fpls.2020.574073Unmanned aerial vehicle (UAV) technology is an emerging powerful approach for high-throughput plant phenotyping field-grown crops. Switchgrass (Panicum virgatum L.) is a lignocellulosic bioenergy crop for which studies on yield, sustainability, and biofuel traits are performed. In this study, we exploited UAV-based imagery (LiDAR and multispectral approaches) to measure plant height, perimeter, and biomass yield in field-grown switchgrass in order to make predictions on bioenergy traits. Manual ground truth measurements validated the automated UAV results. We found UAV-based plant height and perimeter measurements were highly correlated and consistent with the manual measurements (r = 0.93, p < 0.001). Furthermore, we found that phenotyping parameters can significantly improve the natural saturation of the spectral index of the optical image for detecting high-density plantings. Combining plant canopy height (CH) and canopy perimeter (CP) parameters with spectral index (SI), we developed a robust and standardized biomass yield model [biomass = (m × SI) × CP × CH] where the m is an SI-sensitive coefficient linearly varying with the plant phenological changing stage. The biomass yield estimates obtained from this model were strongly correlated with manual measurements (r = 0.90, p < 0.001). Taking together, our results provide insights into the capacity of UAV-based remote sensing for switchgrass high-throughput phenotyping in the field, which will be useful for breeding and cultivar development.Copyright © 2020 Li, Piasecki, Millwood, Wolfe, Mazarei and Stewart.LiFeiFDepartment of Plant Sciences, University of Tennessee, Knoxville, Knoxville, TN, United States.Center for Bioenergy Innovation, Oak Ridge National Laboratory, Oak Ridge, TN, United States.PiaseckiCristianoCDepartment of Plant Sciences, University of Tennessee, Knoxville, Knoxville, TN, United States.Center for Bioenergy Innovation, Oak Ridge National Laboratory, Oak Ridge, TN, United States.MillwoodReginald JRJDepartment of Plant Sciences, University of Tennessee, Knoxville, Knoxville, TN, United States.Center for Bioenergy Innovation, Oak Ridge National Laboratory, Oak Ridge, TN, United States.WolfeBenjaminBDepartment of Plant Sciences, University of Tennessee, Knoxville, Knoxville, TN, United States.Center for Bioenergy Innovation, Oak Ridge National Laboratory, Oak Ridge, TN, United States.MazareiMitraMDepartment of Plant Sciences, University of Tennessee, Knoxville, Knoxville, TN, United States.Center for Bioenergy Innovation, Oak Ridge National Laboratory, Oak Ridge, TN, United States.StewartC NealCNJrDepartment of Plant Sciences, University of Tennessee, Knoxville, Knoxville, TN, United States.Center for Bioenergy Innovation, Oak Ridge National Laboratory, Oak Ridge, TN, United States.engJournal Article20201020
SwitzerlandFront Plant Sci1015682001664-462XLiDARNitrogenbiomassphenotypespectral index
202061820209162020111684820201117602020111761202011epublish33193511PMC760684910.3389/fpls.2020.574073Adams J. B., Sabol D. E., Kapos V., Almeida Filho R., Roberts D. A., Smith M. O., et al. (1995). Classification of multispectral images based on fractions of endmembers: application to land-cover change in the Brazilian Amazon. Remote Sens. Environ. 52 137–154. 10.1016/0034-4257(94)00098-810.1016/0034-4257(94)00098-8Anjum S. A., Xie X.-Y., Wang L.-C., Saleem M. F., Man C., Lei W. (2011). Morphological, physiological and biochemical responses of plants to drought stress. Afr. J. Agric. Res. 6 2026–2032. 10.5897/AJAR10.02710.5897/AJAR10.027Asner G. P., Mascaro J., Muller-Landau H. C., Vieilledent G., Vaudry R., Rasamoelina M., et al. (2012). A universal airborne LiDAR approach for tropical forest carbon mapping. Oecologia 168 1147–1160. 10.1007/s00442-011-2165-z10.1007/s00442-011-2165-z22033763Baret F., Guyot G. (1991). Potentials and limits of vegetation indices for LAI and APAR assessment. Remote Sens. Environ. 35 161–173. 10.1016/0034-4257(91)90009-U10.1016/0034-4257(91)90009-UBarnes R. F., Miller D. F., Nelson J. C. (1995). Forages: An Introduction to Grassland Agriculture. Ames, IA: Iowa State University Press.Barney J. N., Mann J. J., Kyser G. B., Blumwald E., Van Deynze A., Ditomaso J. M. (2009). Tolerance of switchgrass to extreme soil moisture stress: ecological implications. Plant Sci. 177 724–732. 10.1016/j.plantsci.2009.09.00310.1016/j.plantsci.2009.09.003Baxter J., Mazarei M., Labbe N., Kline L. M., Cheng Q., Windham M. T., et al. (2014). Two-year field analysis of reduced recalcitrance transgenic switchgrass. Plant Biotechnol. J. 12 914–924. 10.1111/pbi.1219510.1111/pbi.1219524751162Bendig J., Bolten A., Bennertz S., Broscheit J., Eichfuss S., Bareth G. (2014). Estimating biomass of barley using crop surface models (CSMs) derived from UAV-based RGB imaging. Remote Sens. 6 10395–10412. 10.3390/rs6111039510.3390/rs61110395Bendig J., Yu K., Aasen H., Bolten A., Bennertz S., Broscheit J., et al. (2015). Combining UAV-based plant height from crop surface models, visible, and near infrared vegetation indices for biomass monitoring in barley. Int. J. Appl. Earth Obs. Geoinf. 39 79–87. 10.1016/j.jag.2015.02.01210.1016/j.jag.2015.02.012Boe A., Casler M. D. (2005). Hierarchical analysis of switchgrass morphology. Crop Sci. 45 2465–2472. 10.2135/cropsci2004.070310.2135/cropsci2004.0703Bolles R. C., Baker H. H., Marimont D. H. (1987). Epipolar-plane image analysis: an approach to determining structure from motion. Int. J. Comput. Vis. 1 7–55. 10.1007/bf0012852510.1007/bf00128525Bouton J. H. (2007). Molecular breeding of switchgrass for use as a biofuel crop. Curr. Opin. Genet. Dev. 17 553–558. 10.1016/j.gde.2007.08.01210.1016/j.gde.2007.08.01217933511Broge N. H., Leblanc E. (2001). Comparing prediction power and stability of broadband and hyperspectral vegetation indices for estimation of green leaf area index and canopy chlorophyll density. Remote Sens. Environ. 76 156–172. 10.1016/S0034-4257(00)00197-810.1016/S0034-4257(00)00197-8Casler M. D. (2012). “Switchgrass breeding, genetics, and genomics,” in Switchgrass. Green Energy and Technology, ed. Monti A. (London: Springer; ), 29–53. 10.1007/978-1-4471-2903-5_210.1007/978-1-4471-2903-5_2Cassida K., Muir J., Hussey M., Read J., Venuto B., Ocumpaugh W. (2005). Biomass yield and stand characteristics of switchgrass in south central US environments. Crop Sci. 45 673–681. 10.2135/cropsci2005.067310.2135/cropsci2005.0673Dandois J. P., Ellis E. C. (2013). High spatial resolution three-dimensional mapping of vegetation spectral dynamics using computer vision. Remote Sens. Environ. 136 259–276. 10.1016/j.rse.2013.04.00510.1016/j.rse.2013.04.005Emery S. M., Stahlheber K. A., Gross K. L. (2020). Drought minimized nitrogen fertilization effects on bioenergy feedstock quality. Biomass Bioenergy 133:105452 10.1016/j.biombioe.2019.10545210.1016/j.biombioe.2019.105452Fernandez M. G. S., Becraft P. W., Yin Y., Lübberstedt T. (2009). From dwarves to giants? Plant height manipulation for biomass yield. Trends Plant Sci. 14 454–461. 10.1016/j.tplants.2009.06.00510.1016/j.tplants.2009.06.00519616467Garrigues S., Allard D., Baret F., Weiss M. (2006). Influence of landscape spatial heterogeneity on the non-linear estimation of leaf area index from moderate spatial resolution remote sensing data. Remote Sens. Environ. 105 286–298. 10.1016/j.rse.2006.07.01310.1016/j.rse.2006.07.013Gitelson A. A. (2004). Wide dynamic range vegetation index for remote quantification of biophysical characteristics of vegetation. J. Plant Physiol. 161 165–173. 10.1078/0176-1617-0117610.1078/0176-1617-0117615022830Hansen P., Schjoerring J. (2003). Reflectance measurement of canopy biomass and nitrogen status in wheat crops using normalized difference vegetation indices and partial least squares regression. Remote Sens. Environ. 86 542–553. 10.1016/S0034-4257(03)00131-710.1016/S0034-4257(03)00131-7Hardin C. F., Fu C., Hisano H., Xiao X., Shen H., Stewart C. N., et al. (2013). Standardization of switchgrass sample collection for cell wall and biomass trait analysis. Bioenergy Res. 6 755–762. 10.1007/s12155-012-9292-110.1007/s12155-012-9292-1Huete A., Liu H., Batchily K., Van Leeuwen W. (1997). A comparison of vegetation indices over a global set of TM images for EOS-MODIS. Remote Sens. Environ. 59 440–451. 10.1016/S0034-4257(96)00112-510.1016/S0034-4257(96)00112-5Jakob K., Zhou F., Paterson A. H. (2009). Genetic improvement of C4 grasses as cellulosic biofuel feedstocks. In Vitro Cell. Dev. Biol. Plant 45 291–305. 10.1007/s11627-009-9214-x10.1007/s11627-009-9214-xJames M. R., Robson S. (2014). Mitigating systematic error in topographic models derived from UAV and ground-based image networks. Earth Surf. Process Landf. 39 1413–1420. 10.1002/esp.360910.1002/esp.3609Jimenez-Berni J. A., Deery D. M., Rozas-Larraondo P., Condon A. T. G., Rebetzke G. J., James R. A., et al. (2018). High throughput determination of plant height, ground cover, and above-ground biomass in wheat with LiDAR. Front. Plant Sci. 9:237. 10.3389/fpls.2018.0023710.3389/fpls.2018.00237PMC583503329535749Jung J. Y., Lal R. (2011). Impacts of nitrogen fertilization on biomass production of switchgrass (Panicum virgatum L.) and changes in soil organic carbon in Ohio. Geoderma 166 145–152. 10.1016/j.geoderma.2011.07.02310.1016/j.geoderma.2011.07.023Lemus R., Brummer E. C., Burras C. L., Moore K. J., Barker M. F., Molstad N. E. (2008). Effects of nitrogen fertilization on biomass yield and quality in large fields of established switchgrass in southern Iowa, USA. Biomass Bioenergy 32 1187–1194. 10.1016/j.biombioe.2008.02.01610.1016/j.biombioe.2008.02.016Lewandowski I., Scurlock J. M., Lindvall E., Christou M. (2003). The development and current status of perennial rhizomatous grasses as energy crops in the US and Europe. Biomass Bioenergy 25 335–361. 10.1016/S0961-9534(03)00030-810.1016/S0961-9534(03)00030-8Li F., Chen J., Zeng Y., Wu B., Zhang X. (2018). Renewed estimates of grassland aboveground biomass showing drought impacts. J. Geophys. Res. Biogeosci. 123 138–148. 10.1002/2017JG00425510.1002/2017JG004255Li F., Chen W., Zeng Y., Zhao Q., Wu B. (2014). Improving estimates of grassland fractional vegetation cover based on a pixel dichotomy model: a case study in Inner Mongolia, China. Remote Sens. 6 4705–4722. 10.3390/rs606470510.3390/rs6064705Li F., Zeng Y., Luo J., Ma R., Wu B. (2016). Modeling grassland aboveground biomass using a pure vegetation index. Ecol. Indic. 62 279–288. 10.1016/j.ecolind.2015.11.00510.1016/j.ecolind.2015.11.005Lim K., Treitz P., Wulder M., St-Onge B., Flood M. (2003). LiDAR remote sensing of forest structure. Prog. Phys. Geogr. 27 88–106. 10.1191/0309133303pp360ra10.1191/0309133303pp360raLowry D. B., Lovell J. T., Zhang L., Bonnette J., Fay P. A., Mitchell R. B., et al. (2019). QTL× environment interactions underlie adaptive divergence in switchgrass across a large latitudinal gradient. Proc. Natl. Acad. Sci. U.S.A. 116 12933–12941. 10.1073/pnas.182154311610.1073/pnas.1821543116PMC660093131182579Lussem U., Bolten A., Menne J., Gnyp M. L., Schellberg J., Bareth G. (2019). Estimating biomass in temperate grassland with high resolution canopy surface models from UAV-based RGB images and vegetation indices. J. Appl. Remote Sens. 13:034525 10.1117/1.JRS.13.03452510.1117/1.JRS.13.034525Madec S., Baret F., De Solan B., Thomas S., Dutartre D., Jezequel S., et al. (2017). High-throughput phenotyping of plant height: comparing unmanned aerial vehicles and ground LiDAR estimates. Front. Plant Sci. 8:2002. 10.3389/fpls.2017.0200210.3389/fpls.2017.02002PMC571183029230229Mahlein A.-K., Rumpf T., Welke P., Dehne H.-W., Plümer L., Steiner U., et al. (2013). Development of spectral indices for detecting and identifying plant diseases. Remote Sens. Environ. 128 21–30. 10.1016/j.rse.2012.09.01910.1016/j.rse.2012.09.019Mallet C., Bretar F. (2009). Full-waveform topographic lidar: state-of-the-art. ISPRS J. Photogramm. Remote Sens. 64 1–16. 10.1016/j.isprsjprs.2008.09.00710.1016/j.isprsjprs.2008.09.007Martinez-Reyna J., Vogel K. P. (2002). Incompatibility systems in switchgrass. Crop Sci. 42 1800–1805. 10.2135/cropsci2002.180010.2135/cropsci2002.1800McLaren J. S. (2005). Crop biotechnology provides an opportunity to develop a sustainable future. Trends Biotechnol. 23 339–342. 10.1016/j.tibtech.2005.04.00410.1016/j.tibtech.2005.04.00415978317Monti A., Zegada-Lizarazu W., Zanetti F., Casler M. (2019). Nitrogen fertilization management of switchgrass, miscanthus and giant reed: a review. Adv. Agron. 153 87–119. 10.1016/bs.agron.2018.08.00110.1016/bs.agron.2018.08.001Mutanga O., Skidmore A. K. (2004). Narrow band vegetation indices overcome the saturation problem in biomass estimation. Int. J. Remote Sens. 25 3999–4014. 10.1080/0143116031000165492310.1080/01431160310001654923Naik S. N., Goud V. V., Rout P. K., Dalai A. K. (2010). Production of first and second generation biofuels: a comprehensive review. Renew. Sust. Energ. Rev. 14 578–597. 10.1016/j.rser.2009.10.00310.1016/j.rser.2009.10.003Oliensis J. (2000). A critique of structure-from-motion algorithms. Comput. Vis. Image Underst. 80 172–214. 10.1006/cviu.2000.086910.1006/cviu.2000.0869Pearson R. L., Miller L. D. (1972). Remote Mapping of Standing Crop Biomass for Estimation of the Productivity of the Shortgrass Prairie. Fort Collins, CO: Colorado State University.Popescu S. C., Wynne R. H., Nelson R. F. (2003). Measuring individual tree crown diameter with lidar and assessing its influence on estimating forest volume and biomass. Can. J. Remote Sens. 29 564–577. 10.5589/m03-02710.5589/m03-0270Reitberger J., Krzystek P., Stilla U. (2008). Analysis of full waveform LIDAR data for the classification of deciduous and coniferous trees. Int. J. Remote Sens. 29 1407–1431. 10.1080/0143116070173644810.1080/01431160701736448Remondino F., Spera M. G., Nocerino E., Menna F., Nex F. (2014). State of the art in high density image matching. Photogramm. Rec. 29 144–166. 10.1111/phor.1206310.1111/phor.12063Rouse J., Haas R., Schell J., Deering D. (1974). Monitoring vegetation systems in the Great Plains with ERTS. NASA Spec. Publ. 351:309.Schmer M. R., Vogel K. P., Mitchell R., Dien B., Jung H., Casler M. (2012). Temporal and spatial variation in switchgrass biomass composition and theoretical ethanol yield. Agron. J. 104 54–64. 10.2134/agronj2011.019510.2134/agronj2011.0195Schmer M. R., Vogel K. P., Mitchell R. B., Perrin R. K. (2008). Net energy of cellulosic ethanol from switchgrass. Proc. Natl. Acad. Sci. U.S.A. 105 464–469. 10.1073/pnas.070476710510.1073/pnas.0704767105PMC220655918180449Shabanov N., Wang Y., Buermann W., Dong J., Hoffman S., Smith G., et al. (2003). Effect of foliage spatial heterogeneity in the MODIS LAI and FPAR algorithm over broadleaf forests. Remote Sens. Environ. 85 410–423. 10.1016/S0034-4257(03)00017-810.1016/S0034-4257(03)00017-8Tillack A., Clasen A., Kleinschmit B., Förster M. (2014). Estimation of the seasonal leaf area index in an alluvial forest using high-resolution satellite-based vegetation indices. Remote Sens. Environ. 141 52–63. 10.1016/j.rse.2013.10.01810.1016/j.rse.2013.10.018Tripathi S. C., Sayre K., Kaul J., Narang R. (2003). Growth and morphology of spring wheat (Triticum aestivum L.) culms and their association with lodging: effects of genotypes, N levels and ethephon. Field Crops Res. 84 271–290. 10.1016/S0378-4290(03)00095-910.1016/S0378-4290(03)00095-9Tucker C., Vanpraet C. L., Sharman M., Van Ittersum G. (1985). Satellite remote sensing of total herbaceous biomass production in the Senegalese Sahel: 1980-1984. Remote Sens. Environ. 17 233–249. 10.1016/0034-4257(85)90097-510.1016/0034-4257(85)90097-5Vogel K. P. (2004). “Switchgrass,” in Warm-Season (C4) Grasses ASA-CSSA-SSSA Monograph, eds Moser L. E., Sollenberger L., Burson B. (Madison, WI: Wiley; ), 561–588. 10.2134/agronmonogr45.c1610.2134/agronmonogr45.c16Vogel K. P., Dien B. S., Jung H. G., Casler M. D., Masterson S. D., Mitchell R. B. (2011). Quantifying actual and theoretical ethanol yields for switchgrass strains using NIRS analyses. Bioenergy Res. 4 96–110. 10.1007/s12155-010-9104-410.1007/s12155-010-9104-4Walter J. D. C., Edwards J., Mcdonald G., Kuchel H. (2019). Estimating biomass and canopy height with LiDAR for field crop breeding. Front. Plant Sci. 10:1145. 10.3389/fpls.2019.0114510.3389/fpls.2019.01145PMC677548331611889
3248169820200928
2223-7747962020May28Plants (Basel, Switzerland)Plants (Basel)Transcriptome Analysis Identifies Candidate Target Genes Involved in Glyphosate-Resistance Mechanism in Lolium multiflorum.68510.3390/plants9060685Italian ryegrass (Lolium multiflorum; LOLMU) is one of the most troublesome weeds in temperate regions in the world. This weed species interfere with wheat, corn, rye, and oat, causing significant crop yield losses. This species has evolved glyphosate resistance, making it difficult to control. The mechanisms of glyphosate resistance are still unknown, and an understanding thereof will favor the development of new strategies of management. The present study is the first transcriptome study in LOLMU using glyphosate-resistant and -sensitive biotypes, aiming to identify and to provide a list of the candidate target genes related to glyphosate resistance mechanism. The transcriptome was assembled de novo, producing 87,433 contigs with an N50 of 740 bp and an average length of 575 bp. There were 92 and 54 up- and down-regulated genes, respectively, in the resistant biotype, while a total of 1683 were differentially expressed in the sensitive biotype in response to glyphosate treatment. We selected 14 highly induced genes and seven with repressed expression in the resistant biotype in response to glyphosate. Of these genes, a significant proportion were related to the plasma membrane, indicating that there is a barrier making it difficult for glyphosate to enter the cell.CechinJoaneiJDepartment of Crop Protection, Federal University of Pelotas, Pelotas, RS 96160-000, Brazil.PiaseckiCristianoCDepartment of Crop Protection, Federal University of Pelotas, Pelotas, RS 96160-000, Brazil.Department of Plant Sciences, University of Tennessee, Knoxville, TN 37996, USA.BenemannDaiane PDPDepartment of Crop Protection, Federal University of Pelotas, Pelotas, RS 96160-000, Brazil.KremerFrederico SFSCenter for Technological Development, Federal University of Pelotas (UFPel), Pelotas, RS 96010-610, Brazil.GalliVanessaVCenter for Technological Development, Federal University of Pelotas (UFPel), Pelotas, RS 96010-610, Brazil.MaiaLuciano CLCDepartment of Plant Breeding, Federal University of Pelotas (UFPel), Pelotas, RS 96010-610, Brazil.AgostinettoDirceuDDepartment of Crop Protection, Federal University of Pelotas, Pelotas, RS 96160-000, Brazil.VargasAnd LeandroALDepartment of Weed Science, Brazilian Agricultural Research Corporation (EMBRAPA), Passo Fundo, RS 99050-970, Brazil.eng00000Coordenação de Aperfeiçoamento de Pessoal de Nível Superior000000Conselho Nacional de Desenvolvimento Científico e TecnológicoJournal Article20200528
SwitzerlandPlants (Basel)1015961812223-7747Italian ryegrassRNA-Seqdifferential gene expressionnext-generation sequencingresistance mechanismThe authors declare no conflict of interest.
202052202052320205242020636020206360202063612020528epublish32481698PMC735713510.3390/plants9060685plants9060685Vargas L., Roman E.S., Rizzardi M.A., Silva V.C. Alteração das características biológicas dos biótipos de azevém (Lolium multiflorum) ocasionada pela resistência ao herbicida glyphosate. Planta Daninha. 2005;23:153–160. doi: 10.1590/S0100-83582005000100018.10.1590/S0100-83582005000100018Preston C., Wakelin A.M., Dolman F.C., Bostamam Y., Boutsalis P. A Decade of glyphosate-resistant Lolium around the world: Mechanisms, genes, fitness, and agronomic management. Weed Sci. 2009;57:435–441. doi: 10.1614/WS-08-181.1.10.1614/WS-08-181.1Vargas L., Roman E.S. Seletividade e eficiência de herbicidas em cereais de inverno. Rev. Bras. Herbic. 2005;4:1–10. doi: 10.7824/rbh.v4i3.32.10.7824/rbh.v4i3.32Nandula V.K. Italian Ryegrass (Lolium perenne ssp. multiflorum) and corn (Zea mays) competition. Am. J. Plant Sci. 2014;5:3914–3924. doi: 10.4236/ajps.2014.526410.10.4236/ajps.2014.526410Bond J.A., Eubank T.W., Bond R.C., Golden B.R., Edwards H.M. Glyphosate-resistant Italian ryegrass (Lolium perenne ssp. multiflorum) control with fall-applied residual herbicides. Weed Technol. 2014;28:361–370. doi: 10.1614/WT-D-13-00149.1.10.1614/WT-D-13-00149.1Roman E.S., Vargas L., Rizzardi M.A., Mattei R.W. Resistance of Italian ryegrass (Lolium multiflorum) to glyphosate. Planta Daninha. 2004;22:301–306. doi: 10.1590/S0100-83582004000200018.10.1590/S0100-83582004000200018Paula J., Agostinetto D., Schaedler C., Vargas L., Silva D.R. Competição de trigo com azevém em função de épocas de aplicação e doses de nitrogênio. Planta Daninha. 2011;29:557–563. doi: 10.1590/S0100-83582011000300009.10.1590/S0100-83582011000300009Adegas F., Vargas L., Gazziero D., Karam D., Silva A., Agostinetto D. Impacto econômico da resistência de plantas daninhas a herbicidas no Brasil. EMBRAPA. 2017;132:1–12.Vargas L., Adegas F., Gazziero D., Karam D., Agostinetto D., Silva W. Resistência de plantas daninhas aos herbicidas no Brasil. Histórico, distribuição, impacto econômico, manejo e prevenção. In: Meschede D.K., Gazziero D.L.P., editors. A Era Glyphosate: Agricultura, Meio Ambiente e Homem. Midiograf II; Londrina, Brazil: 2016. pp. 219–239.Yuan J.S., Tranel P.J., Stewart C.N. Non-target-site herbicide resistance: A family business. Trends Plant Sci. 2007;12:6–13. doi: 10.1016/j.tplants.2006.11.001.10.1016/j.tplants.2006.11.00117161644Délye C., Jasieniuk M., Le Corre V. Deciphering the evolution of herbicide resistance in weeds. Trends Genet. 2013;29:649–658. doi: 10.1016/j.tig.2013.06.001.10.1016/j.tig.2013.06.00123830583Salas R.A., Scott R.C., Dayan F.E., Burgos N.R. EPSPS gene amplification in glyphosate-resistant Italian Ryegrass (Lolium perenne ssp. multiflorum) populations from Arkansas (United States) J. Agric. Food Chem. 2015;63:5885–5893. doi: 10.1021/acs.jafc.5b00018.10.1021/acs.jafc.5b0001825760654Sammons R.D., Gaines T.A. Glyphosate resistance: State of knowledge. Pest Manag. Sci. 2014;70:1367–1377. doi: 10.1002/ps.3743.10.1002/ps.3743PMC426017225180399Délye C. Unravelling the genetic bases of non-target-site-based resistance (NTSR) to herbicides: A major challenge for weed science in the forthcoming decade. Pest Manag. Sci. 2013;69:176–187. doi: 10.1002/ps.3318.10.1002/ps.331822614948Unamba C.I.N., Nag A., Sharma R.K. Next generation sequencing technologies: The doorway to the unexplored genomics of non-model plants. Front. Plant Sci. 2015;6:1074. doi: 10.3389/fpls.2015.01074.10.3389/fpls.2015.01074PMC467990726734016Martin J.A., Wang Z. Next-generation transcriptome assembly. Nat. Rev. Genet. 2011;12:671–682. doi: 10.1038/nrg3068.10.1038/nrg306821897427Hereward J.P., Werth J.A., Thornby D.F., Keenan M., Chauhan B.S., Walter G.H. Gene expression in response to glyphosate treatment in fleabane (Conyza bonariensis) - glyphosate death response and candidate resistance genes. Pest Manag. Sci. 2018;74:2346–2355. doi: 10.1002/ps.4804.10.1002/ps.480429193675Piasecki C., Yang Y., Benemann D.P., Kremer F.S., Galli V., Millwood R.J., Cechin J., Agostinetto D., Maia L.C., Vargas L., et al. Transcriptomic Analysis Identifies New Non-Target Site Glyphosate-Resistance Genes in Conyza bonariensis. Plants. 2019;8:157. doi: 10.3390/plants8060157.10.3390/plants8060157PMC663084231181629Duhoux A., Carrère S., Gouzy J., Bonin L., Délye C. RNA-Seq analysis of rye-grass transcriptomic response to an herbicide inhibiting acetolactate-synthase identifies transcripts linked to non-target-site-based resistance. Plant Mol. Biol. 2015;87:473–487. doi: 10.1007/s11103-015-0292-3.10.1007/s11103-015-0292-325636204Gardin J.A.C., Gouzy J., Carrère S., Délye C. ALOMYbase, a resource to investigate non-target-site-based resistance to herbicides inhibiting acetolactate-synthase (ALS) in the major grass weed Alopecurus myosuroides (black-grass) BMC Genomics. 2015;16:590. doi: 10.1186/s12864-015-1804-x.10.1186/s12864-015-1804-xPMC453410426265378An J., Shen X., Ma Q., Yang C., Liu S., Chen Y. Transcriptome profiling to discover putative genes associated with paraquat resistance in goosegrass (Eleusine indica L.) PLoS ONE. 2014;9:e99940. doi: 10.1371/journal.pone.0099940.10.1371/journal.pone.0099940PMC405733624927422Giacomini D.A., Gaines T., Beffa R., Tranel P.J. Optimizing RNA-seq studies to investigate herbicide resistance. Pest Manag. Sci. 2018;74:2260–2264. doi: 10.1002/ps.4822.10.1002/ps.482229222921Yuan J.S., Abercrombie L.L.G., Cao Y., Halfhill M.D., Zhou X., Peng Y., Hu J., Rao M.R., Heck G.R., Larosa T.J., et al. Functional genomics analysis of horseweed (Conyza canadensis) with special reference to the evolution of non–target-site glyphosate resistance. Weed Sci. 2010;58:109–117. doi: 10.1614/WS-D-09-00037.1.10.1614/WS-D-09-00037.1Délye C., Duhoux A., Pernin F., Riggins C.W., Tranel P.J. Molecular mechanisms of herbicide resistance. Weed Sci. 2015;63:91–115. doi: 10.1614/WS-D-13-00096.1.10.1614/WS-D-13-00096.1Peng Y., Lai Z., Lane T., Nageswara-Rao M., Okada M., Jasieniuk M., O’Geen H., Kim R.W., Sammons R.D., Rieseberg L.H., et al. De novo genome assembly of the economically important weed horseweed using integrated data from multiple sequencing platforms. Plant Physiol. 2014;166:1241–1254. doi: 10.1104/pp.114.247668.10.1104/pp.114.247668PMC422636625209985Vargas L., Ruchel Q., Agostinetto D., Lamego F.P., Langaro A.C., Piesanti S.R. Verificação do mecanismo de resistência ao glyphosate em biótipos de azevém. Planta Daninha. 2016;34:565–573. doi: 10.1590/s0100-83582016340300017.10.1590/s0100-83582016340300017Novaković L., Guo T., Bacic A., Sampathkumar A., Johnson K.L. Hitting the wall—Sensing and signaling pathways involved in plant cell wall remodeling in response to abiotic stress. Plants. 2018;7:89. doi: 10.3390/plants7040089.10.3390/plants7040089PMC631390430360552Caverzan A., Piasecki C., Chavarria G., Stewart C., Vargas L. Defenses against ROS in crops and weeds: The effects of interference and herbicides. Int. J. Mol. Sci. 2019;20:1086. doi: 10.3390/ijms20051086.10.3390/ijms20051086PMC642909330832379Tzin V., Galili G. New insights into the shikimate and aromatic amino acids biosynthesis pathways in plants. Mol. Plant. 2010;3:956–972. doi: 10.1093/mp/ssq048.10.1093/mp/ssq04820817774Schönbrunn E., Eschenburg S., Shuttleworth W.A., Schloss J.V., Amrhein N., Evans J.N., Kabsch W. Interaction of the herbicide glyphosate with its target enzyme 5-enolpyruvylshikimate 3-phosphate synthase in atomic detail. Proc. Natl. Acad. Sci. USA. 2001;98:1376–1380. doi: 10.1073/pnas.98.4.1376.10.1073/pnas.98.4.1376PMC2926411171958Nol N., Tsikou D., Eid M., Livieratos I.C., Giannopolitis C.N. Shikimate leaf disc assay for early detection of glyphosate resistance in Conyza canadensis and relative transcript levels of EPSPS and ABC transporter genes. Weed Res. 2012;52:233–241. doi: 10.1111/j.1365-3180.2012.00911.x.10.1111/j.1365-3180.2012.00911.xCramer G.R., Urano K., Delrot S., Pezzotti M., Shinozaki K. Effects of abiotic stress on plants: A systems biology perspective. BMC Plant Biol. 2011;11:163. doi: 10.1186/1471-2229-11-163.10.1186/1471-2229-11-163PMC325225822094046Cobb A., Reade P. Herbicides and Plant Physiology. 2nd ed. Wiley-Blackwell; Shropshire, UK: 2010. p. 286.Pan L., Yu Q., Han H., Mao L., Nyporko A., Fan L., Bai L., Powles S.B. Aldo-keto reductase metabolizes glyphosate and confers glyphosate resistance in Echinochloa colona. Plant Physiol. 2019;181:1519–1534. doi: 10.1104/pp.19.00979.10.1104/pp.19.00979PMC687802731551360Maroli A.S., Nandula V.K., Dayan F.E., Duke S.O., Gerard P., Tharayil N. Metabolic profiling and enzyme analyses indicate a potential role of antioxidant systems in complementing glyphosate resistance in an Amaranthus palmeri biotype. J. Agric. Food Chem. 2015;63:9199–9209. doi: 10.1021/acs.jafc.5b04223.10.1021/acs.jafc.5b0422326329798Powles S.B., Yu Q. Evolution in action: Plants resistant to herbicides. Annu. Rev. Plant Biol. 2010;61:317–347. doi: 10.1146/annurev-arplant-042809-112119.10.1146/annurev-arplant-042809-11211920192743Kreuz K., Tommasini R., Martinoia E. Old enzymes for a new job: Herbicide detoxification in plants. Plant Physiol. 1996;111:349–353. doi: 10.1104/pp.111.2.349.10.1104/pp.111.2.349PMC15784312226292Bowles D., Lim E.-K., Poppenberger B., Vaistij F.E. Glycosyltransferases of lipophilic small molecules. Annu. Rev. Plant Biol. 2006;57:567–597. doi: 10.1146/annurev.arplant.57.032905.105429.10.1146/annurev.arplant.57.032905.10542916669774Sharma B., Joshi D., Yadav P.K., Gupta A.K., Bhatt T.K. Role of ubiquitin-mediated degradation system in plant biology. Front. Plant Sci. 2016;7:806. doi: 10.3389/fpls.2016.00806.10.3389/fpls.2016.00806PMC489731127375660Hu H., Sun S.-C. Ubiquitin signaling in immune responses. Cell Res. 2016;26:457–483. doi: 10.1038/cr.2016.40.10.1038/cr.2016.40PMC482213427012466Zulet A., Gil-Monreal M., Villamor J.G., Zabalza A., van der Hoorn R.A.L., Royuela M. Proteolytic pathways induced by herbicides that inhibit amino acid biosynthesis. PLoS ONE. 2013;8:e73847. doi: 10.1371/journal.pone.0073847.10.1371/journal.pone.0073847PMC376526124040092Burgos N.R., Tranel P.J., Streibig J.C., Davis V.M., Shaner D., Norsworthy J.K., Ritz C. Review: Confirmation of resistance to herbicides and evaluation of resistance levels. Weed Sci. 2013;61:4–20. doi: 10.1614/WS-D-12-00032.1.10.1614/WS-D-12-00032.1Singh B.K., Shaner D.L. Rapid determination of glyphosate injury to plants and identification of glyphosate resistant plants. Weed Sci. Soc. Am. 1998;12:527–530. doi: 10.1017/S0890037X00044250.10.1017/S0890037X00044250Perez-Jones A., Park K.W., Polge N., Colquhoun J., Mallory-Smith C.A. Investigating the mechanisms of glyphosate resistance in Lolium multiflorum. Planta. 2007;226:395–404. doi: 10.1007/s00425-007-0490-6.10.1007/s00425-007-0490-617323079Piasecki C., Carvalho I.R., Cechin J., Goulart F.A.P., da Maia L.C., Agostinetto D., Caverzan A., Stewart C.N., Jr., Vargas L. Oxidative stress and differential antioxidant enzyme activity in glyphosate-resistant and -sensitive hairy fleabane in response to glyphosate treatment. Bragantia. 2019;78:379–396. doi: 10.1590/1678-4499.20180289.10.1590/1678-4499.20180289Wingett S.W., Andrews S. FastQ Screen: A tool for multi-genome mapping and quality control. F1000Res. 2018;7:1338. doi: 10.12688/f1000research.15931.2.10.12688/f1000research.15931.2PMC612437730254741Bolger A.M., Lohse M., Usadel B. Trimmomatic: A flexible trimmer for Illumina sequence data. Bioinformatics. 2014;30:2114–2120. doi: 10.1093/bioinformatics/btu170.10.1093/bioinformatics/btu170PMC410359024695404Grabherr M.G., Haas B.J., Yassour M., Levin J.Z., Thompson D.A., Amit I., Adiconis X., Fan L., Raychowdhury R., Zeng Q., et al. Full-length transcriptome assembly from RNA-Seq data without a reference genome. Nat. Biotechnol. 2011;29:644–652. doi: 10.1038/nbt.1883.10.1038/nbt.1883PMC357171221572440Haas B.J., Papanicolaou A., Yassour M., Grabherr M., Blood P.D., Bowden J., Couger M.B., Eccles D., Li B., Lieber M., et al. De novo transcript sequence reconstruction from RNA-seq using the Trinity platform for reference generation and analysis. Nat. Protoc. 2013;8:1494–1512. doi: 10.1038/nprot.2013.084.10.1038/nprot.2013.084PMC387513223845962Conesa A., Madrigal P., Tarazona S., Gomez-Cabrero D., Cervera A., McPherson A., Szcześniak M.W., Gaffney D.J., Elo L.L., Zhang X., et al. A survey of best practices for RNA-seq data analysis. Genome Biol. 2016;17:13. doi: 10.1186/s13059-016-0881-8.10.1186/s13059-016-0881-8PMC472880026813401Cock P.J.A., Antao T., Chang J.T., Chapman B.A., Cox C.J., Dalke A., Friedberg I., Hamelryck T., Kauff F., Wilczynski B., et al. Biopython: Freely available Python tools for computational molecular biology and bioinformatics. Bioinformatics. 2009;25:1422–1423. doi: 10.1093/bioinformatics/btp163.10.1093/bioinformatics/btp163PMC268251219304878Apweiler R. UniProt: The Universal Protein knowledgebase. Nucleic Acids Res. 2004;32:D115–D119. doi: 10.1093/nar/gkh131.10.1093/nar/gkh131PMC30886514681372Buchfink B., Xie C., Huson D.H. Fast and sensitive protein alignment using DIAMOND. Nat. Methods. 2015;12:59–60. doi: 10.1038/nmeth.3176.10.1038/nmeth.317625402007Petersen T.N., Brunak S., von Heijne G., Nielsen H. SignalP 4.0: Discriminating signal peptides from transmembrane regions. Nat. Methods. 2011;8:785–786. doi: 10.1038/nmeth.1701.10.1038/nmeth.170121959131Bushnell B., Rood J., Singer E. BBMerge—Accurate paired shotgun read merging via overlap. PLoS ONE. 2017;12:e0185056. doi: 10.1371/journal.pone.0185056.10.1371/journal.pone.0185056PMC565762229073143Love M., Huber W., Anders S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 2014;15:550. doi: 10.1186/s13059-014-0550-8.10.1186/s13059-014-0550-8PMC430204925516281Bray N.L., Pimentel H., Melsted P., Pachter L. Near-optimal probabilistic RNA-seq quantification. Nat. Biotechnol. 2016;34:525–527. doi: 10.1038/nbt.3519.10.1038/nbt.351927043002Robinson M.D., McCarthy D.J., Smyth G.K. EdgeR: A Bioconductor package for differential expression analysis of digital gene expression data. Bioinformatics. 2010;26:139–140. doi: 10.1093/bioinformatics/btp616.10.1093/bioinformatics/btp616PMC279681819910308Heberle H., Meirelles G.V., da Silva F.R., Telles G.P., Minghim R. InteractiVenn: A web-based tool for the analysis of sets through Venn diagrams. BMC Bioinformatics. 2015;16:169. doi: 10.1186/s12859-015-0611-3.10.1186/s12859-015-0611-3PMC445560425994840Zhang Z., Hu J. Development and Validation of Endogenous Reference Genes for Expression Profiling of Medaka (Oryzias latipes) Exposed to Endocrine Disrupting Chemicals by Quantitative Real-Time RT-PCR. Toxicol. Sci. 2007;95:356–368. doi: 10.1093/toxsci/kfl161.10.1093/toxsci/kfl16117093204Wan H., Zhao Z., Qian C., Sui Y., Malik A.A., Chen J. Selection of appropriate reference genes for gene expression studies by quantitative real-time polymerase chain reaction in cucumber. Anal. Biochem. 2010;399:257–261. doi: 10.1016/j.ab.2009.12.008.10.1016/j.ab.2009.12.00820005862Clarke B., Rahman S. A microarray analysis of wheat grain hardness. Theor. Appl. Genet. 2005;110:1259–1267. doi: 10.1007/s00122-005-1962-3.10.1007/s00122-005-1962-315806348Lee J.M., Roche J.R., Donaghy D.J., Thrush A., Sathish P. Validation of reference genes for quantitative RT-PCR studies of gene expression in perennial ryegrass (Lolium perenne L.) BMC Mol. Biol. 2010;11:8. doi: 10.1186/1471-2199-11-8.10.1186/1471-2199-11-8PMC282747120089196Xie F., Xiao P., Chen D., Xu L., Zhang B. miRDeepFinder: A miRNA analysis tool for deep sequencing of plant small RNAs. Plant Mol. Biol. 2012;80:75–84. doi: 10.1007/s11103-012-9885-2.10.1007/s11103-012-9885-222290409Yuan J.S., Wang D., Stewart C.N. Statistical methods for efficiency adjusted real-time PCR quantification. Biotechnol. J. 2008;3:112–123. doi: 10.1002/biot.200700169.10.1002/biot.20070016918074404
3118162920200930
2223-7747862019Jun07Plants (Basel, Switzerland)Plants (Basel)Transcriptomic Analysis Identifies New Non-Target Site Glyphosate-Resistance Genes in Conyza bonariensis.15710.3390/plants8060157Conyza bonariensis (hairy fleabane) is one of the most problematic and widespread glyphosate-resistant weeds in the world. This highly competitive weed species significantly interferes with crop growth and substantially decreases crop yield. Despite its agricultural importance, the molecular mechanisms of glyphosate resistance are still unknown. The present RNA-Seq study was performed with the goal of identifying differentially expressed candidate transcripts (genes) related to metabolism-based non-target site glyphosate resistance in C. bonariensis. The whole-transcriptome was de novo assembled from glyphosate-resistant and -sensitive biotypes of C. bonariensis from Southern Brazil. The RNA was extracted from untreated and glyphosate-treated plants at several timepoints up to 288 h after treatment in both biotypes. The transcriptome assembly produced 90,124 contigs with an average length of 777 bp and N50 of 1118 bp. In response to glyphosate treatment, differential gene expression analysis was performed on glyphosate-resistant and -sensitive biotypes. A total of 9622 genes were differentially expressed as a response to glyphosate treatment in both biotypes, 4297 (44.6%) being up- and 5325 (55.4%) down-regulated. The resistant biotype presented 1770 up- and 2333 down-regulated genes while the sensitive biotype had 2335 and 2800 up- and down-regulated genes, respectively. Among them, 974 up- and 1290 down-regulated genes were co-expressed in both biotypes. In the present work, we identified 41 new candidate target genes from five families related to herbicide transport and metabolism: 19 ABC transporters, 10 CYP450s, one glutathione S-transferase (GST), five glycosyltransferases (GT), and six genes related to antioxidant enzyme catalase (CAT), peroxidase (POD), and superoxide dismutase (SOD). The candidate genes may participate in metabolic-based glyphosate resistance via oxidation, conjugation, transport, and degradation, plus antioxidation. One or more of these genes might 'rescue' resistant plants from irreversible damage after glyphosate treatment. The 41 target genes we report in the present study may inform further functional genomics studies, including gene editing approaches to elucidate glyphosate-resistance mechanisms in C. bonariensis.PiaseckiCristianoC0000-0002-2868-6863Department of Crop Protection, Federal University of Pelotas (UFPel), Pelotas 96010-610, Brazil. cpiasecki@utk.edu.Department of Plant Sciences, University of Tennessee (UTK), Knoxville, TN 37996, USA. cpiasecki@utk.edu.YangYongilY0000-0002-6925-5410Department of Plant Sciences, University of Tennessee (UTK), Knoxville, TN 37996, USA. yyang98@utk.edu.BenemannDaiane PDPDepartment of Crop Protection, Federal University of Pelotas (UFPel), Pelotas 96010-610, Brazil. daiane.benemann@ufpel.edu.br.KremerFrederico SFSCenter for Technological Development, Federal University of Pelotas (UFPel), Pelotas 96010-610, Brazil. frederico.kremer@thrivedatascience.com.GalliVanessaVCenter for Technological Development, Federal University of Pelotas (UFPel), Pelotas 96010-610, Brazil. vanessa.galli@ufpel.edu.br.MillwoodReginald JRJDepartment of Plant Sciences, University of Tennessee (UTK), Knoxville, TN 37996, USA. rmillwood@utk.edu.CechinJoaneiJDepartment of Crop Protection, Federal University of Pelotas (UFPel), Pelotas 96010-610, Brazil. jcechin@ufpel.edu.br.AgostinettoDirceuDDepartment of Crop Protection, Federal University of Pelotas (UFPel), Pelotas 96010-610, Brazil. dirceu_agostinetto@ufpel.edu.br.MaiaLuciano CLCDepartment of Plant Breeding, Federal University of Pelotas (UFPel), Pelotas 96010-610, Brazil. luciano.maia@ufpel.edu.br.VargasLeandroLDepartment of Weed Science, Brazilian Agricultural Research Corporation (Embrapa), Passo Fundo 99050-970, Brazil. leandro.vargas@embrapa.br.StewartC NealCNJr0000-0003-3026-9193Department of Plant Sciences, University of Tennessee (UTK), Knoxville, TN 37996, USA. nealstewart@utk.edu.eng0000Conselho Nacional de Desenvolvimento Científico e Tecnológico00000Coordenação de Aperfeiçoamento de Pessoal de Nível SuperiorJournal Article20190607
SwitzerlandPlants (Basel)1015961812223-7747RNA-Seqdifferential gene expressionhairy fleabaneherbicide metabolizationherbicide resistancenext-generation sequencingnon-target-site resistance (NTSR)The authors declare no conflict of interest.
2019542019531201964201961260201961260201961261201967epublish31181629PMC663084210.3390/plants8060157plants8060157Jeschke P. Progress of modern agricultural chemistry and future prospects. Pest Manag. Sci. 2016;72:433–455. doi: 10.1002/ps.4190.10.1002/ps.419026577980Van Wychen L. WSSA Calculates Billions in Potential Economic Losses from Uncontrolled Weeds. [(accessed on 10 December 2018)];Weed Sci. Soc. Am. 2016 Available online: http://wssa.net/wp-content/uploads/WSSA-Crop-Losses-Release.pdf.Trezzi M.M., Vidal R.A., Patel F., Miotto E., Debastiani F., Balbinot A.A., Mosquen R. Impact of Conyza bonariensis density and establishment period on soyabean grain yield, yield components and economic threshold. Weed Res. 2015;55:34–41. doi: 10.1111/wre.12125.10.1111/wre.12125Bajwa A.A., Sadia S., Ali H.H., Jabran K., Peerzada A.M., Chauhan B.S. Biology and management of two important Conyza weeds: A global review. Environ. Sci. Pollut. Res. 2016;23:24694–24710. doi: 10.1007/s11356-016-7794-7.10.1007/s11356-016-7794-727798798Shrestha A., Steinhauer K.M., Moretti M.L., Hanson B.D., Jasieniuk M., Hembree K.J., Wright S.D. Distribution of glyphosate-resistant and glyphosate-susceptible hairy fleabane (Conyza bonariensis) in central California and their phenological development. J. Pest Sci. 2014;87:201–209. doi: 10.1007/s10340-013-0524-8.10.1007/s10340-013-0524-8Amaro-Blanco I., Fernández-Moreno P.T., Osuna-Ruiz M.D., Bastida F., De Prado R. Mechanisms of glyphosate resistance and response to alternative herbicide-based management in populations of the three Conyza species introduced in southern Spain. Pest Manag. Sci. 2018;74:1925–1937. doi: 10.1002/ps.4896.10.1002/ps.489629479817Trezzi M.M., Vidal R.A., Xavier E., Rosin D., Balbinot A.A., Jr., Prates M. Resistência ao glyphosate em biótipos de buva (Conyza spp.) das regiões oeste e sudoeste do Paraná. Planta Daninha. 2011;29:1113–1120. doi: 10.1590/S0100-83582011000500019.10.1590/S0100-83582011000500019Vargas L., Bianchi M., Rizzardi M., Agostinetto D., Dal Magro T. Conyza bonariensis biotypes resistant to glyphosate in southern Brazil. Planta Daninha. 2007;25:573–578. doi: 10.1590/S0100-83582007000300017.10.1590/S0100-83582007000300017Heap I. The International Survey of Herbicide Resistant Weeds. [(accessed on 10 January 2019)]; Available online: www.weedscience.org.Kleinman Z., Ben-Ami G., Rubin B. From sensitivity to resistance—Factors affecting the response of Conyza spp. to glyphosate. Pest Manag. Sci. 2016;72:1681–1688. doi: 10.1002/ps.4187.10.1002/ps.418726573966Kleinman Z., Rubin B. Non-target-site glyphosate resistance in Conyza bonariensis is based on modified subcellular distribution of the herbicide. Pest Manag. Sci. 2017;73:246–253. doi: 10.1002/ps.4293.10.1002/ps.429327098558Matzrafi M., Lazar T.W., Sibony M., Rubin B. Conyza species: Distribution and evolution of multiple target-site herbicide resistances. Planta. 2015;242:259–267. doi: 10.1007/s00425-015-2306-4.10.1007/s00425-015-2306-425912190Duke S.O. The history and current status of glyphosate. Pest Manag. Sci. 2018;74:1027–1034. doi: 10.1002/ps.4652.10.1002/ps.465228643882Powles S.B., Yu Q. Evolution in Action: Plants resistant to herbicides. Annu. Rev. Plant Biol. 2010;61:317–347. doi: 10.1146/annurev-arplant-042809-112119.10.1146/annurev-arplant-042809-11211920192743Baucom R.S., Holt J.S. Weeds of agricultural importance: Bridging the gap between evolutionary ecology and crop and weed science. New Phytol. 2009;184:741–743. doi: 10.1111/j.1469-8137.2009.03077.x.10.1111/j.1469-8137.2009.03077.x20021591Hereward J.P., Werth J.A., Thornby D.F., Keenan M., Chauhan B.S., Walter G.H. Gene expression in response to glyphosate treatment in fleabane (Conyza bonariensis)—Glyphosate death response and candidate resistance genes. Pest Manag. Sci. 2018;74:2346–2355. doi: 10.1002/ps.4804.10.1002/ps.480429193675Maroli A.S., Gaines T.A., Foley M.E., Duke S.O., Doğramacı M., Anderson J.V., Horvath D.P., Chao W.S., Tharayil N. Omics in weed science: A perspective from genomics, transcriptomics, and metabolomics approaches. Weed Sci. 2018;66:681–695. doi: 10.1017/wsc.2018.33.10.1017/wsc.2018.33Délye C., Duhoux A., Pernin F., Riggins C.W., Tranel P.J. Molecular mechanisms of herbicide resistance. Weed Sci. 2015;63:91–115. doi: 10.1614/WS-D-13-00096.1.10.1614/WS-D-13-00096.1Sammons R.D., Gaines T.A. Glyphosate resistance: State of knowledge. Pest Manag. Sci. 2014;70:1367–1377. doi: 10.1002/ps.3743.10.1002/ps.3743PMC426017225180399Yuan J.S., Tranel P.J., Stewart C.N. Non-target-site herbicide resistance: A family business. Trends Plant Sci. 2007;12:1360–1385. doi: 10.1016/j.tplants.2006.11.001.10.1016/j.tplants.2006.11.00117161644Moretti M.L., Alárcon-Reverte R., Pearce S., Morran S., Hanson B.D. Transcription of putative tonoplast transporters in response to glyphosate and paraquat stress in Conyza bonariensis and Conyza canadensis and selection of reference genes for qRT-PCR. PLoS ONE. 2017 doi: 10.1371/journal.pone.0180794.10.1371/journal.pone.0180794PMC550726628700644Feng P.C.C., Tran M., Chiu T., Sammons R.D., Heck G.R., CaJacob C.A. Investigations into glyphosate-resistant horseweed (Conyza canadensis): Retention, uptake, translocation, and metabolism. Weed Sci. 2004;52:498–505. doi: 10.1614/WS-03-137R.10.1614/WS-03-137RPeng Y., Abercrombie L.G., Yuan J.S., Riggins C.W., Sammons R.D., Tranel J., Stewart C.N. Characterization of the horseweed (Conyza canadensis) transcriptome using GS-FLX 454 pyrosequencing and its application for expression analysis of candidate non-target herbicide resistance genes. Pest Manag. Sci. 2010;66:1053–1062. doi: 10.1002/ps.2004.10.1002/ps.200420715018Yuan J.S., Abercrombie L.L.G., Cao Y., Halfhill M.D., Zhou X., Peng Y., Hu J., Rao M.R., Heck G.R., Larosa T.J., et al. Functional Genomics Analysis of Horseweed (Conyza canadensis) with Special Reference to the Evolution of Non–Target-Site Glyphosate Resistance. Weed Sci. 2010;58:109–117. doi: 10.1614/WS-D-09-00037.1.10.1614/WS-D-09-00037.1Délye C. Unraveling the genetic bases of non-target-site-based resistance (NTSR) to herbicides: A major challenge for weed science in the forthcoming decade. Pest Manag. Sci. 2013;69:176–187. doi: 10.1002/ps.3318.10.1002/ps.331822614948Gardin J.A.C., Gouzy J., Carrère S., Délye C. ALOMYbase, a resource to investigate non-target-site-based resistance to herbicides inhibiting acetolactate-synthase (ALS) in the major grass weed Alopecurus myosuroides (black-grass) BMC Genom. 2015;16:590. doi: 10.1186/s12864-015-1804-x.10.1186/s12864-015-1804-xPMC453410426265378Gehan M.A., Greenham K., Mockler T.C., McClung C.R. Transcriptional networks-crops, clocks, and abiotic stress. Curr. Opin. Plant Biol. 2015;24:39–46. doi: 10.1016/j.pbi.2015.01.004.10.1016/j.pbi.2015.01.00425646668Piasecki C., Carvalho I., Cechin J., Goulart F., Maia L., Agostinetto D., Caverzan A., Stewart C.N., Jr., Vargas L. Oxidative stress and differential antioxidant enzyme activity in glyphosate-resistant and sensitive hairy fleabane in response to glyphosate treatment. Bragantia. 2019 in press.Mueller T.M., Massey J.H., Hayes R.M., Main C.L., Stewart C.N., Jr. Shikimate accumulates in both glyphosate-sensitive and glyphosate-resistant horseweed (Conyza canadensis L. Cronq.) J. Agric. Food Chem. 2003;51:680–684. doi: 10.1021/jf026006k.10.1021/jf026006k12537441Délye C., Jasieniuk M., Le Corre V. Deciphering the evolution of herbicide resistance in weeds. Trends Genet. 2013;29:649–658. doi: 10.1016/j.tig.2013.06.001.10.1016/j.tig.2013.06.00123830583Cobb A.H., Reade J.P.H. Herbicides and Plant Physiology. 2nd ed. Wiley-Blackwell; Shropshire, UK: 2010. p. 286.González-Torralva F., Brown A.P., Chivasa S. Comparative proteomic analysis of horseweed (Conyza canadensis) biotypes identifies candidate proteins for glyphosate resistance. Sci. Rep. 2017;7:42565. doi: 10.1038/srep42565.10.1038/srep42565PMC530978628198407Gaines T.A., Lorentz L., Figge A., Herrmann J., Maiwald F., Ott M.C., Han H., Busi R., Yu Q., Powles S.B., et al. RNA-Seq transcriptome analysis to identify genes involved in metabolism-based diclofop resistance in Lolium rigidum. Plant J. 2014;78:865–876. doi: 10.1111/tpj.12514.10.1111/tpj.1251424654891Maroli A.S., Nandula V.K., Dayan F.E., Duke S.O., Gerard P., Tharayil N. Metabolic profiling and enzyme analyses indicate a potential role of antioxidant systems in complementing glyphosate resistance in an Amaranthus palmeri biotype. J. Agric. Food Chem. 2015;63:9199–9209. doi: 10.1021/acs.jafc.5b04223.10.1021/acs.jafc.5b0422326329798Kreuz K., Tommasini R., Martinoia E. Old enzymes for a new job: Herbicide detoxification in plants. Plant Physiol. 1996;111:349–353. doi: 10.1104/pp.111.2.349.10.1104/pp.111.2.349PMC15784312226292Siminszky B. Plant cytochrome P450-mediated herbicide metabolism. Phytochem. Rev. 2006;5:445–458. doi: 10.1007/s11101-006-9011-7.10.1007/s11101-006-9011-7Schuler M.A., Werck-Reichhart D. Functional genomics of P450s. Annu. Rev. Plant Biol. 2003;54:629–667. doi: 10.1146/annurev.arplant.54.031902.134840.10.1146/annurev.arplant.54.031902.13484014503006Xu J., Wang X., Guo W. The cytochrome P450 superfamily: Key players in plant development and defense. J. Integr. Agric. 2015;14:1673–1686. doi: 10.1016/S2095-3119(14)60980-1.10.1016/S2095-3119(14)60980-1Cummins I., Dixon D.P., Freitag-Pohl S., Skipsey M., Edwards R. Multiple roles for plant glutathione transferases in xenobiotic detoxification. Drug Metab. Rev. 2011;43:266–280. doi: 10.3109/03602532.2011.552910.10.3109/03602532.2011.55291021425939Busi R., Porri A., Gaines T.A., Powles S.B.P. Pyroxasulfone resistance in Lolium rigidum is metabolism-based. Pestic. Biochem. Physiol. 2018;148:74–80. doi: 10.1016/j.pestbp.2018.03.017.10.1016/j.pestbp.2018.03.01729891380Bowles D., Lim E.-K., Poppenberger B., Vaistij F.E. Glycosyltransferases of lipophilic small molecules. Annu. Rev. Plant Biol. 2006;57:567–597. doi: 10.1146/annurev.arplant.57.032905.105429.10.1146/annurev.arplant.57.032905.10542916669774Tani E., Chachalis D., Travlos I.S. A Glyphosate resistance mechanism in Conyza canadensis involves synchronization of EPSPS and ABC-transporter genes. Plant Mol. Biol. Rep. 2015;33:1721–1730. doi: 10.1007/s11105-015-0868-8.10.1007/s11105-015-0868-8Tani E., Chachalis D., Travlos I.S., Bilalis D. Environmental conditions influence induction of key ABC-transporter genes affecting glyphosate resistance mechanism in Conyza canadensis. Int. J. Mol. Sci. 2016;17:342. doi: 10.3390/ijms17040342.10.3390/ijms17040342PMC484887927104532Dinelli G., Marotti I., Bonetti A., Catizone P., Urbano J.M., Barnes J. Physiological and molecular basis of glyphosate resistance in C. bonariensis (L.) Cronq. biotypes from Spain. Weed Res. 2008;48:257–265. doi: 10.1111/j.1365-3180.2008.00623.x.10.1111/j.1365-3180.2008.00623.xSchönbrunn E., Eschenburg S., Shuttleworth W.A., Scloss J.V., Amrhein N., Evans J.N.S., Kabsch W. Interaction of the herbicide glyphosate with its target enzyme 5-enolpyruvylshikimate 3-phosphate synthase in atomic detail. Proc. Nat. Acad. Sci. USA. 2001;98:1376–1380. doi: 10.1073/pnas.98.4.1376.10.1073/pnas.98.4.1376PMC2926411171958Gill S.S., Tuteja N. Reactive oxygen species and antioxidant machinery in abiotic stress tolerance in crop plants. Plant Physiol. Biochem. 2010;48:909–930. doi: 10.1016/j.plaphy.2010.08.016.10.1016/j.plaphy.2010.08.01620870416Foyer C.H. Redox homeostasis and antioxidant signaling: A metabolic interface between stress perception and physiological responses. Plant Cell. 2005;17:1866–1875. doi: 10.1105/tpc.105.033589.10.1105/tpc.105.033589PMC116753715987996Garg N., Manchanda G. ROS generation in plants: Boon or bane? Plant Biosyst. 2009;143:81–96. doi: 10.1080/11263500802633626.10.1080/11263500802633626Harre N.T., Nie H., Jiang Y., Young B.G. Differential antioxidant enzyme activity in rapid-response glyphosate-resistant Ambrosia trifida. Pest Manag. Sci. 2018;74:2125–2132. doi: 10.1002/ps.4909.10.1002/ps.490929532632Kumar S., Trivedi P.K. Glutathione S-transferases: Role in combating abiotic stresses including arsenic detoxification in plants. Front. Plant Sci. 2018;9:751. doi: 10.3389/fpls.2018.00751.10.3389/fpls.2018.00751PMC599975929930563Bolger A.M., Lohse M., Usadel B. Trimmomatic: A flexible trimmer for Illumina sequence data. Bioinformatics. 2014;30:2114–2120. doi: 10.1093/bioinformatics/btu170.10.1093/bioinformatics/btu170PMC410359024695404Grabherr M.G., Haas B.J., Yassour M., Levin J.Z., Thompson D.A., Amit I., Adiconis X., Fan L., Raychowdhury R., Zeng Q., et al. Full-length transcriptome assembly from RNA-Seq data without a reference genome. Nat. Biotechnol. 2011;29:644–652. doi: 10.1038/nbt.1883.10.1038/nbt.1883PMC357171221572440Conesa A., Madrigal P., Tarazona S., Gomez-Cabrero D., Cervera A., McPherson A., Szcześniak M.W., Gaffney D.J., Elo L.L., Zhang X., et al. A survey of best practices for RNA-seq data analysis. Genome Biol. 2016;17:13. doi: 10.1186/s13059-016-0881-8.10.1186/s13059-016-0881-8PMC472880026813401Haas B.J., Papanicolaou A., Yassour M., Grabherr M., Blood P.D., Bowden J., Couger M.B., Eccles D., Li B., Lieber M., et al. De novo transcript sequence reconstruction from RNA-seq using the Trinity platform for reference generation and analysis. Nat. Protoc. 2013;8:1494–1512. doi: 10.1038/nprot.2013.084.10.1038/nprot.2013.084PMC387513223845962Cock P.J.A., Antao T., Chang J.T., Chapman B.A., Cox C.J., Dalke A., Friedberg I., Hamelryck T., Kauff F., Wilczynski B., et al. Biopython: Freely available Python tools for computational molecular biology and bioinformatics. Bioinformatics. 2009;25:1422–1423. doi: 10.1093/bioinformatics/btp163.10.1093/bioinformatics/btp163PMC268251219304878Apweiler R., Bairoch A., Wu C.H., Barker W.C., Boeckmann B., Ferro S., Gasteiger E., Huang H., Lopez R., Magrane M., et al. UniProt: The Universal Protein knowledgebase. Nucleic Acids Res. 2004;32:D115–D119. doi: 10.1093/nar/gkh131.10.1093/nar/gkh131PMC30886514681372Buchfink B., Xie C., Huson D.H. Fast and sensitive protein alignment using DIAMOND. Nat. Methods. 2015;12:59–60. doi: 10.1038/nmeth.3176.10.1038/nmeth.317625402007Petersen T.N., Brunak S., Von Heijne G., Nielsen H. SignalP 4.0: Discriminating signal peptides from transmembrane regions. Nat. Methods. 2011;8:785–786. doi: 10.1038/nmeth.1701.10.1038/nmeth.170121959131Lagesen K., Hallin P., Rødland E.A., Stærfeldt H.-H., Rognes T., Ussery D.W. RNAmmer: Consistent and rapid annotation of ribosomal RNA genes. Nucleic Acids Res. 2007;35:3100–3108. doi: 10.1093/nar/gkm160.10.1093/nar/gkm160PMC188881217452365Camacho C., Coulouris G., Avagyan V., Ma N., Papadopoulos J., Bealer K., Madden T.L. BLAST+: Architecture and applications. BMC Bioinform. 2009;10:421. doi: 10.1186/1471-2105-10-421.10.1186/1471-2105-10-421PMC280385720003500Altschul S.F., Gish W., Miller W., Myers E.W., Lipman D.J. Basic Local Alignment Search Tool. J. Mol. Biol. 1990;215:403–410. doi: 10.1016/S0022-2836(05)80360-2.10.1016/S0022-2836(05)80360-22231712Bray N.L., Pimentel H., Melsted P., Pachter L. Near-optimal probabilistic RNA-seq quantification. Nat. Biotechnol. 2016;34:525–527. doi: 10.1038/nbt.3519.10.1038/nbt.351927043002Robinson M.D., McCarthy D.J., Smyth G.K. edgeR: A Bioconductor package for differential expression analysis of digital gene expression data. Bioinformatics. 2010;26:139–140. doi: 10.1093/bioinformatics/btp616.10.1093/bioinformatics/btp616PMC279681819910308Yuan J.S., Wang D., Stewart C.N. Statistical methods for efficiency adjusted real-time PCR quantification. Biotechnol. J. 2008;3:112–123. doi: 10.1002/biot.200700169.10.1002/biot.20070016918074404
308323792019060420200225
1422-00672052019Mar02International journal of molecular sciencesInt J Mol SciDefenses Against ROS in Crops and Weeds: The Effects of Interference and Herbicides.108610.3390/ijms20051086The antioxidant defense system acts to maintain the equilibrium between the production of reactive oxygen species (ROS) and the elimination of toxic levels of ROS in plants. Overproduction and accumulation of ROS results in metabolic disorders and can lead to the oxidative destruction of the cell. Several stress factors cause ROS overproduction and trigger oxidative stress in crops and weeds. Recently, the involvement of the antioxidant system in weed interference and herbicide treatment in crops and weeds has been the subject of investigation. In this review, we address ROS production and plant mechanisms of defense, alterations in the antioxidant system at transcriptional and enzymatic levels in crops induced by weed interference, and herbicide exposure in crops and weeds. We also describe the mechanisms of action in herbicides that lead to ROS generation in target plants. Lastly, we discuss the relations between antioxidant systems and weed biology and evolution, as well as the interactive effects of herbicide treatment on these factors.CaverzanAndréiaA0000-0003-0925-144XFaculty of Agronomy and Veterinary Medicine, Agronomy Post-Graduate Program, University of Passo Fundo (UPF), Passo Fundo 99052-900, Brazil. acaverzan@hotmail.com.PiaseckiCristianoC0000-0002-2868-6863Department of Crop Protection, Federal University of Pelotas, Pelotas 96160-000, Brazil. c_piasecki@hotmail.com.ChavarriaGeraldoGFaculty of Agronomy and Veterinary Medicine, Agronomy Post-Graduate Program, University of Passo Fundo (UPF), Passo Fundo 99052-900, Brazil. geraldochavarria@upf.br.StewartC NealCNJrDepartment of Plant Sciences, University of Tennessee, Knoxville, TN 37996-4561, USA. nealstewart@utk.edu.VargasLeandroLDepartment of Weed Science, Brazilian Agricultural Research Corporation (EMBRAPA), Passo Fundo 99050-970, Brazil. leandro.vargas@embrapa.br.engJournal ArticleReview20190302
SwitzerlandInt J Mol Sci1010927911422-00670Herbicides0Reactive Oxygen SpeciesIMCrops, Agriculturaldrug effectsgeneticsmetabolismEvolution, MolecularHerbicide ResistancegeneticsHerbicidespharmacologyPlant Weedsdrug effectsgeneticsmetabolismReactive Oxygen Speciesmetabolismherbicide resistanceherbicide treatmentoxidative stressreactive oxygen species (ROS)weed evolutionThe authors declare no conflict of interest.
2019232019225201936602019366020196560201931epublish30832379PMC642909310.3390/ijms20051086ijms20051086Pan D., Li Q.X., Lin Z., Chen C., Tang W., Pan C., Tan H., Zeng D. Interactions between salicylic acid and antioxidant enzymes tilting the balance of H2O2 from photorespiration in non-target crops under halosulfuron-methyl stress. Pestic. Biochem. Physiol. 2017;143:214–223. doi: 10.1016/j.pestbp.2017.09.007.10.1016/j.pestbp.2017.09.00729183595Gill S.S., Tuteja N. Reactive oxygen species and antioxidant machinery in abiotic stresses tolerance in crop plants. Plant Physiol. Biochem. 2010;48:909–930. doi: 10.1016/j.plaphy.2010.08.016.10.1016/j.plaphy.2010.08.01620870416Mittler R. ROS are good. Trends Plant Sci. 2017;22:11–19. doi: 10.1016/j.tplants.2016.08.002.10.1016/j.tplants.2016.08.00227666517Czarnocka W., Karpiński S. Friend or foe? Reactive oxygen species production, scavenging and signaling in plant response to environmental stresses. Free Radic. Biol. Med. 2018;122:4–20. doi: 10.1016/j.freeradbiomed.2018.01.011.10.1016/j.freeradbiomed.2018.01.01129331649Jiang L., Yang H. Prometryne-induced oxidative stress and impact on antioxidant enzymes in wheat. Ecotoxicol. Environ. Saf. 2009;72:1687–1693. doi: 10.1016/j.ecoenv.2009.04.025.10.1016/j.ecoenv.2009.04.02519473703Jiang L., Ma L., Sui Y., Han S.Q., Wu Z.Y., Feng Y.X., Yang H. Effect of manure compost on the herbicide prometryne bioavailability to wheat plants. J. Hazard. Mater. 2010;184:337–344. doi: 10.1016/j.jhazmat.2010.08.041.10.1016/j.jhazmat.2010.08.04120828929Afifi M., Swanton C. Early physiological mechanisms of weed competition. Weed Sci. 2012;60:542–551. doi: 10.1614/WS-D-12-00013.1.10.1614/WS-D-12-00013.1An J., Shen X., Ma Q., Yang C., Liu S., Chen Y. Transcriptome profiling to discover putative genes associated with paraquat resistance in goosegrass (Eleusine indica L.) PLoS ONE. 2014;9:e99940. doi: 10.1371/journal.pone.0099940.10.1371/journal.pone.0099940PMC405733624927422Maroli A.S., Nandula V., Dayan F.E., Duke E., Gerard P., Tharayil N. Metabolic profiling and enzyme analyses indicate a potential role of antioxidant systems in complementing glyphosate resistance in an Amaranthus palmeri biotype. J. Agric. Food Chem. 2015;63:9199–9209. doi: 10.1021/acs.jafc.5b04223.10.1021/acs.jafc.5b0422326329798Darmanti S., Santosa L.H., Dewi K., Nugroho L.H. Antioxidative defenses of soybean [Glycine max (L.) Merr. cv. Grobogan] against purple nutsedge (Cyperus rotundus L.) interference during drought stress. J. Anim. Plant Sci. 2016;26:225–232.Agostinetto D., Tarouco C.P., Nohatto M.A., Oliveira C., Fraga D.S. Metabolic activity of wheat and ryegrass plants in competition. Planta Daninha. 2017;35:e017155463. doi: 10.1590/s0100-83582017350100044.10.1590/s0100-83582017350100044Keith B.K., Burns E.E., Bothner B., Carey C.C., Mazurie A.J., Hilmer J.K., Biyiklioglu S., Budak H., Dyer W.E. Intensive herbicide use has selected for constitutively elevated levels of stress-responsive mRNAs and proteins in multiple herbicide-resistant Avena fatua L. Pest. Manag. Sci. 2017;73:2267–2281. doi: 10.1002/ps.4605.10.1002/ps.460528485049Piasecki C., Rizzardi M.A., Schons J., Caverzan A., Chavarria G. Does the interference of GR® volunteer corn alter stress metabolism on soybean? Planta Daninha. 2018;36:e018171955. doi: 10.1590/s0100-83582018360100018.10.1590/s0100-83582018360100018Piasecki C., Rizzardi M.A., Schons J., Caverzan A., Oliveira C. Interference of volunteer corn on stress metabolism and yield of dry bean. Planta Daninha. 2018;36:e018176669. doi: 10.1590/s0100-83582018360100112.10.1590/s0100-83582018360100112Harre N.T., Nie H., Jiang Y., Young B.G. Differential antioxidant enzyme activity in rapid-response glyphosate-resistant Ambrosia trifida. Pest. Manag. Sci. 2018;74:2125–2132. doi: 10.1002/ps.4909.10.1002/ps.490929532632Ahsan N., Lee D.G., Lee K.W., Alam I., Lee S.H., Bahk J.D., Lee B.H. Glyphosate-induced oxidative stress in rice leaves revealed by proteomic approach. Plant Physiol. Biochem. 2008;46:1062–1070. doi: 10.1016/j.plaphy.2008.07.002.10.1016/j.plaphy.2008.07.00218755596Agostinetto D., Oliveira C., Langaro A.C., Nohatto M.A., Manica-Berto R. Change in physiological features in ryegrass biotypes in competition with soybean due resistance to glyphosate. Planta Daninha. 2016;34:517–526. doi: 10.1590/s0100-83582016340300012.10.1590/s0100-83582016340300012Zhang J.J., Lu Y.C., Zhang J.J., Tan L.R., Yang H. Accumulation and toxicological response of atrazine in rice crops. Ecotoxicol. Environ. Saf. 2014;102:105–112. doi: 10.1016/j.ecoenv.2013.12.034.10.1016/j.ecoenv.2013.12.03424530725Song N.H., Yin X.L., Chen G.F., Yang H. Biological responses of wheat (Triticum aestivum) plants to the herbicide chlorotoluron in soils. Chemosphere. 2007;68:1779–1787. doi: 10.1016/j.chemosphere.2007.03.023.10.1016/j.chemosphere.2007.03.02317462703Boulahia K., Carol P., Planchais S., Abrous-Belbachir O. Phaseolus vulgaris L. seedlings exposed to prometryn herbicide contaminated soil trigger an oxidative stress response. J. Agric. Food Chem. 2016;64:3150–3160. doi: 10.1021/acs.jafc.6b00328.10.1021/acs.jafc.6b0032827019272Neve P., Vila-Aiub M., Roux F. Evolutionary-thinking in agricultural weed management. New Phytol. 2009;184:783–793. doi: 10.1111/j.1469-8137.2009.03034.x.10.1111/j.1469-8137.2009.03034.x19780985Mittler R. Oxidative stress, antioxidants and stress tolerance. Trends Plant Sci. 2002;7:405–410. doi: 10.1016/S1360-1385(02)02312-9.10.1016/S1360-1385(02)02312-912234732Suzuki N., Koussevitzky S., Mittler R., Miller G. ROS and redox signaling in the response of plants to abiotic stress. Plant Cell Environ. 2012;35:259–270. doi: 10.1111/j.1365-3040.2011.02336.x.10.1111/j.1365-3040.2011.02336.x21486305Das K., Roychoudhury A. Reactive oxygen species (ROS) and response of antioxidants as ROS-scavengers during environmental stress in plants. Front. Plant Sci. 2014;2:1–13. doi: 10.3389/fenvs.2014.00053.10.3389/fenvs.2014.00053Scandalios J.G. The rise of ROS. Trends Biochem. Sci. 2002;27:483–486. doi: 10.1016/S0968-0004(02)02170-9.10.1016/S0968-0004(02)02170-912217524Caverzan A., Casassola A., Brammer S.P. Abiotic and Biotic Stress in Plants-Recent Advances and Future Perspectives. InTech; Rijeka, Croatia: 2016. Reactive oxygen species and antioxidant enzymes involved in plant tolerance to stress; pp. 463–480.Foyer C.H., Noctor G. Redox homeostasis and antioxidant signaling: A metabolic interface between stress perception and physiological responses. Plant Cell. 2005;17:1866–1875. doi: 10.1105/tpc.105.033589.10.1105/tpc.105.033589PMC116753715987996Anjum N.A., Gill S.S., Gill R., Hasanuzzaman M., Duarte A.C., Pereira E., Ahmad I., Tuteja R., Tuteja N. Metal/metalloid stress tolerance in plants: Role of ascorbate, its redox couple, and associated enzymes. Protoplasma. 2014;251:1265–1283. doi: 10.1007/s00709-014-0636-x.10.1007/s00709-014-0636-x24682425Kumar S., Trivedi P.K. Glutathione S-Transferases: Role in Combating Abiotic Stresses Including Arsenic Detoxification in Plants. Front. Plant Sci. 2018;7:751. doi: 10.3389/fpls.2018.00751.10.3389/fpls.2018.00751PMC599975929930563Ramos L.R.M., Pitelli R.A. Effects of different weed control periods on the productivity of corn crop. Pesq. Agropecu. Bras. 1998;29:1523–1531.Radosevich S.R., Holt J.S., Ghersa C.M. Ecology of Weeds and Invasive Plants: Relationship to Agriculture and Natural Resource Management. 3rd ed. John Wiley & Sons; Hoboken, NJ, USA: 2007.Barroso A.A.M., Yamauti M.S., Alves P.L.C.A. Interference between weed species and two bean cultivars in two times of sowing. Bragantia. 2010;69:609–616. doi: 10.1590/S0006-87052010000300012.10.1590/S0006-87052010000300012Gal J., Afifi M., Lee E., Lukens L., Swanton C.J. Detection of neighboring weeds alters soybean seedling roots and nodulation. Weed Sci. 2015;63:888–900. doi: 10.1614/WS-D-15-00039.1.10.1614/WS-D-15-00039.1Ulguim A.R., Agostinetto D., Oliveira C., Ruchel Q., Silva J.D.G., Vargas L., Avila L.A. Does competition between soybeans and Wild Poinsettia with low-level resistance or susceptibility to glyphosate affect physiology and secondary metabolism? Semina. 2017;38:1133–1144. doi: 10.5433/1679-0359.2017v38n3p1133.10.5433/1679-0359.2017v38n3p1133Rockenbach A.P., Rizzardi M.A., Nunes A.L., Bianchi M.A., Caverzan A., Schneider T. Interference between weeds and crop: Changes in secondary metabolism. Rev. Bras. Herbic. 2018;17:59–70. doi: 10.7824/rbh.v17i1.527.10.7824/rbh.v17i1.527McKenzie-Gopsill A. Ph.D. Thesis. University of Guelph; Guelph, ON, Canada: 2016. Morphological, Molecular and Physiological Mechanisms of Early Season Weed Competition in Soybean (Glycine max (L.) Merr.)De Almeida D.G., Zucoloto M., Zetun M.C., Coelho I., Sobreir F.M. Oxidative stress in vegetable cells mediated by allelochemicals. Revista Facultad Nacional de Agronomía Medellín. 2008;61:4237–4247.Ciniglia C., Mastrobuoni F., Scortichini M., Petriccione M. Oxidative damage and cell-programmed death induced in Zea mays L. by allelochemical stress. Ecotoxicology. 2015;24:926–937. doi: 10.1007/s10646-015-1435-7.10.1007/s10646-015-1435-725736610Sytykiewicz H. Expression patterns of glutathione transferase gene (GstI) in maize seedlings under juglone-induced oxidative stress. Int. J. Mol. Sci. 2011;12:7982–7995. doi: 10.3390/ijms12117982.10.3390/ijms12117982PMC323345122174645Heap I. Global perspective of herbicide-resistant weeds. Pest Manag. Sci. 2014;70:1306–1315. doi: 10.1002/ps.3696.10.1002/ps.369624302673Cobb A.H., Reade P.H.R. Herbicides and Plant Physiology. 2nd ed. John Wiley & Sons; New York, NY, USA: 2010. 286pServaites J.C., Tucci M.A., Geiger D.R. Glyphosate effects on carbon assimilation, ribulose bisphosphate carboxylase activity, and metabolite levels in sugar beet leaves. Plant Physiol. 1987;85:370–374. doi: 10.1104/pp.85.2.370.10.1104/pp.85.2.370PMC105426216665704Duke S.O., Baerson S.R., Rimando A.M. Herbicides: Glyphosate. In: Plimmer J.R., Gammon D.W., Ragsdale N.N., editors. Encyclopedia of Agrochemicals. John Wiley & Sons; New York, NY, USA: 2007.Délye C., Jasieniuk M., Le Corre V. Deciphering the evolution of herbicide resistance in weeds. Trends Genet. 2013;29:649–658. doi: 10.1016/j.tig.2013.06.001.10.1016/j.tig.2013.06.00123830583Grossmann K., Niggeweg R., Christiansen N., Looser R., Ehrhardt T. The herbicide saflufenacil (KixorTm) is a new inhibitor of protoporphyrinogen IX oxidase activity. Weed Sci. 2010;58:1–9. doi: 10.1614/WS-D-09-00004.1.10.1614/WS-D-09-00004.1Jasieniuk M., Brûlé-Babel A.L., Morrison I.N. The evolution and genetics of herbicide resistance in weeds. Weed Sci. 1996;44:176–193. doi: 10.7202/706069ar.10.7202/706069arDélye C. Unraveling the genetic bases of non-target-site-based resistance (NTSR) to herbicides: A major challenge for weed science in the forthcoming decade. Pest Manag. Sci. 2013;69:176–187. doi: 10.1002/ps.3318.10.1002/ps.331822614948Heap I. The International Survey of Herbicide Resistant Weeds. [(accessed on 1 February 2019)]; Available online: www.weedscience.org.Yuan J.S., Tranel P.J., Stewart C.N., Jr. Non-target-site herbicide resistance: A family business. Trends Plant Sci. 2007;12:6–13. doi: 10.1016/j.tplants.2006.11.001.10.1016/j.tplants.2006.11.00117161644Cummins I., Cole D.J., Edwards R. A role for glutathione transferases functioning as glutathione peroxidases in resistance to multiple herbicides in black-grass. Plant J. 1999;18:285–292. doi: 10.1046/j.1365-313X.1999.00452.x.10.1046/j.1365-313X.1999.00452.x10377994Cummins I., Bryant D.N., Edwards R. Safener responsiveness and multiple herbicide resistance in the weed black-grass (Alopecurus myosuroides) Plant Biotechnol. J. 2009;7:807–820. doi: 10.1111/j.1467-7652.2009.00445.x.10.1111/j.1467-7652.2009.00445.x19754839Cummins I., Wortley D.J., Sabbadin F., He Z., Coxon C.R., Straker H.E., Sellars J.D., Knight K., Edwards L., Hughes D., et al. Key role for a glutathione transferase in multiple-herbicide resistance in grass weeds. Proc. Natl. Acad. Sci. USA. 2013;110:5812–5817. doi: 10.1073/pnas.1221179110.10.1073/pnas.1221179110PMC362530023530204Jin Z.L., Zhang F., Ahmed Z.I., Rasheed M., Naeem M.S., Ye Q.F., Zhou W.J. Differential morphological and physiological responses of two oilseed Brassica species to a new herbicide ZJ0273 used in rapeseed fields. Pest. Biochem. Physiol. 2010;98:1–8. doi: 10.1016/j.pestbp.2010.04.002.10.1016/j.pestbp.2010.04.002Wu G.L., Cui J., Tao L., Yang H. Fluroxypyr triggers oxidative damage by producing superoxide and hydrogen peroxide in rice (Oryza sativa) Ecotoxicology. 2010;19:124–132. doi: 10.1007/s10646-009-0396-0.10.1007/s10646-009-0396-019644752Radwan D.E.M. Salicylic acid-induced alleviation of oxidative stress caused by clethodim in maize (Zea mays L.) leaves. Pest. Biochem. Physiol. 2012;102:182–188. doi: 10.1016/j.pestbp.2012.01.002.10.1016/j.pestbp.2012.01.002Jiang L., Yang Y., Jia L.X., Lin J.L., Liu Y., Pan B., Lin Y. Biological responses of wheat (Triticum aestivum) plants to the herbicide simetryneinsoils. Ecotoxicol. Environ. Saf. 2016;127:87–94. doi: 10.1016/j.ecoenv.2016.01.012.10.1016/j.ecoenv.2016.01.01226803524Islam F., Farooq M.A., Gill R.A., Wang J., Yang C., Ali B., Wang G.X., Zhou W. 2,4-D attenuates salinity-induced toxicity by mediating anatomical changes, antioxidant capacity and cation transporters in the roots of rice cultivars. Sci. Rep. 2017;7:10443. doi: 10.1038/s41598-017-09708-x.10.1038/s41598-017-09708-xPMC558539028874677Vercampt H., Koleva L., Vassilev A., Vangronsveld J., Cuypers A. Short-term phytotoxicity in Brassica napus (L.) in response to pre-emergently applied metazachlor: A microcosm study. Environ. Toxicol. Chem. 2017;36:59–70. doi: 10.1002/etc.3538.10.1002/etc.353827345821Guo M.J., Wang Y.G., Yuan X.Y., Dong S.Q., Wen Y.Y., Song X.E., Guo P.Y. Responses of the antioxidant system to fluroxypyr in foxtail millet (Setaria italica L.) at the seedling stage. J. Integr. Agric. 2018;17:554–565. doi: 10.1016/S2095-3119(17)61808-2.10.1016/S2095-3119(17)61808-2Hu T. A glutathione s-transferase confers herbicide tolerance in rice. Crop Breed. Appl. Biotechnol. 2014;14:76–81. doi: 10.1590/1984-70332014v14n2a14.10.1590/1984-70332014v14n2a14Eltayeb A.E., Yamamoto S., Habora M.E.E., Yin L., Tsujimoto H., Tanaka K. Transgenic potato overexpressing Arabidopsis cytosolic AtDHAR1 showed higher tolerance to herbicide, drought and salt stresses. Breed. Sci. 2011;61:3–10. doi: 10.1270/jsbbs.61.3.10.1270/jsbbs.61.3Zhao N., Li W., Bai S., Guo W., Yuan G., Wang F., Liu W., Wang J. Transcriptome profiling to identify genes involved in mesosulfuron-methyl resistance in Alopecurus aequalis. Front. Plant Sci. 2017;8:1–16. doi: 10.3389/fpls.2017.01391.10.3389/fpls.2017.01391PMC555275728848590Babineau M., Mahmood K., Mathiassen S.K., Kudsk P., Kristensen M. De novo transcriptome assembly analysis of weed Apera spica-venti from seven tissues and growth stages. BMC Genom. 2017;18:128. doi: 10.1186/s12864-017-3538-4.10.1186/s12864-017-3538-4PMC529480828166737Matzrafi M., Shaar-Moshe L., Rubin B., Peleg Z. Unraveling the transcriptional basis of temperature-dependent pinoxaden resistance in Brachypodium hybridum. Front. Plant Sci. 2017;8:1–11. doi: 10.3389/fpls.2017.01064.10.3389/fpls.2017.01064PMC547868528680434Chen J., Huang H., Wei S., Huang Z., Wang X., Zhang C. Investigating the mechanisms of glyphosate resistance in goosegrass (Eleusine indica (L.) Gaertn.) by RNA sequencing technology. Plant J. 2017;89:407–415. doi: 10.1111/tpj.13395.10.1111/tpj.1339527743420Duhoux A., Carrère S., Duhoux A., Délye C. Transcriptional markers enable identification of rye-grass (Lolium sp.) plants with non-target-site-based resistance to herbicides inhibiting acetolactate-synthase. Plant Sci. 2015;257:22–36. doi: 10.1016/j.plantsci.2017.01.009.10.1016/j.plantsci.2017.01.00928224916Pan L., Gao H., Xia W., Zhang T., Dong L. Establishing a herbicide-metabolizing enzyme library in Beckmannia syzigachne to identify genes associated with metabolic resistance. J. Exp. Bot. 2016;67:1745–1757. doi: 10.1093/jxb/erv565.10.1093/jxb/erv56526739863Yang Q., Deng W., Li X., Yu Q., Bai L., Zheng M. Target-site and non-target-site based resistance to the herbicide tribenuron-methyl in flixweed (Descurainia sophia L.) BMC Genom. 2016;17:551–564. doi: 10.1186/s12864-016-2915-8.10.1186/s12864-016-2915-8PMC497477927495977Gardin J.A.C., Gouzy J., Carrère S., Délye C. ALOMYbase, a resource to investigate non-target-site-based resistance to herbicides inhibiting acetolactate-synthase (ALS) in the major grass weed Alopecurus myosuroides (black-grass) BMC Genom. 2015;16:590. doi: 10.1186/s12864-015-1804-x.10.1186/s12864-015-1804-xPMC453410426265378Doğramacı M., Foley M.E., Horvath D.P., Hernandez A.G., Khetani R.S., Fields C.J., Keating K.M., Mikel M.A., Anderson J.V. Glyphosate’s impact on vegetative growth in leafy spurge identifies molecular processes and hormone cross-talk associated with increased branching. BMC Genom. 2015;16:395. doi: 10.1186/s12864-015-1627-9.10.1186/s12864-015-1627-9PMC443755725986459Gaines T.A., Lorentz L., Figge A., Herrmann J., Maiwald F., Ott M.C., Han H., Busi R., Yu Q., Powles S.B., et al. RNA-Seq transcriptome analysis to identify genes involved in metabolism-based diclofop resistance in Lolium rigidum. Plant J. 2014;78:865–876. doi: 10.1111/tpj.12514.10.1111/tpj.1251424654891
trying2...
Publications by Cristiano Piasecki | LitMetric

Publications by authors named "Cristiano Piasecki"

Switchgrass ( L.) has immense potential as a bioenergy crop with the aim of producing biofuel as an end goal. Nitrogen (N)-related sustainability traits, such as nitrogen use efficiency (NUE) and nitrogen remobilization efficiency (NRE), are important factors affecting switchgrass quality and productivity.

View Article and Find Full Text PDF

Unmanned aerial vehicles (UAVs) provide an intermediate scale of spatial and spectral data collection that yields increased accuracy and consistency in data collection for morphological and physiological traits than satellites and expanded flexibility and high-throughput compared to ground-based data collection. In this study, we used UAV-based remote sensing for automated phenotyping of field-grown switchgrass (), a leading bioenergy feedstock. Using vegetation indices calculated from a UAV-based multispectral camera, statistical models were developed for rust disease caused by , leaf chlorophyll, nitrogen, and lignin contents.

View Article and Find Full Text PDF

The evolution of herbicide-resistant weed species is a serious threat for weed control. Therefore, we need an improved understanding of how gene regulation confers herbicide resistance in order to slow the evolution of resistance. The present study analyzed differentially expressed genes after glyphosate treatment on a glyphosate-resistant Tennessee ecotype (TNR) of horseweed (), compared to a susceptible biotype (TNS).

View Article and Find Full Text PDF
Article Synopsis
  • - The development of the 'mini-synplastome' provides a new method for introducing synthetic circuits in plant plastids without disturbing the native plastome.
  • - This innovative genome structure is based on the unique organization of dinoflagellate plastomes, featuring multiple minicircles instead of a single genome.
  • - Mini-synplastomes aim to enhance chloroplast biotechnology by allowing easy cloning and predictable transgene expression, while remaining independent from the plant's existing genetic material.
View Article and Find Full Text PDF

Unmanned aerial vehicle (UAV) technology is an emerging powerful approach for high-throughput plant phenotyping field-grown crops. Switchgrass ( L.) is a lignocellulosic bioenergy crop for which studies on yield, sustainability, and biofuel traits are performed.

View Article and Find Full Text PDF

Italian ryegrass (; LOLMU) is one of the most troublesome weeds in temperate regions in the world. This weed species interfere with wheat, corn, rye, and oat, causing significant crop yield losses. This species has evolved glyphosate resistance, making it difficult to control.

View Article and Find Full Text PDF

(hairy fleabane) is one of the most problematic and widespread glyphosate-resistant weeds in the world. This highly competitive weed species significantly interferes with crop growth and substantially decreases crop yield. Despite its agricultural importance, the molecular mechanisms of glyphosate resistance are still unknown.

View Article and Find Full Text PDF

The antioxidant defense system acts to maintain the equilibrium between the production of reactive oxygen species (ROS) and the elimination of toxic levels of ROS in plants. Overproduction and accumulation of ROS results in metabolic disorders and can lead to the oxidative destruction of the cell. Several stress factors cause ROS overproduction and trigger oxidative stress in crops and weeds.

View Article and Find Full Text PDF