Publications by authors named "Cristiano Pesce"

Malignant melanoma, a rapidly spreading form of skin cancer, is becoming more prevalent worldwide. While surgery is successful in treating early-stage melanoma, patients with advanced disease have only a 20 % chance of surviving beyond five years. Melanomas with mutations in the NRAS gene are characterized for a more aggressive tumor biology, poorer prognosis and shorter survival.

View Article and Find Full Text PDF

The aim of this study was the evaluation of suitability of novel mucoadhesive hydrogel platforms for the delivery of therapeutics useful for the management of disorders related to the gastrointestinal tract (GI). At this purpose, here we describe the preparation, the physicochemical characterization and drug delivery behaviour of novel hydrogels, based on self-assembling lipopeptides (MPD02-09), obtained by covalently conjugating lauric acid (LA) to SNA's peptide derivatives gotten by variously combining D- and L- amino acid residues. LA conjugation was aimed at improving the stability of the precursor peptides, obtaining amphiphilic structures, and triggering the hydrogels formation through the self-assembling.

View Article and Find Full Text PDF

Modest tissue penetrance, nonuniform distribution, and suboptimal release of drugs limit the potential of intracranial therapies against glioblastoma. Here, a conformable polymeric implant, μMESH, is realized by intercalating a micronetwork of 3 × 5 μm poly(lactic--glycolic acid) (PLGA) edges over arrays of 20 × 20 μm polyvinyl alcohol (PVA) pillars for the sustained delivery of potent chemotherapeutic molecules, docetaxel (DTXL) and paclitaxel (PTXL). Four different μMESH configurations were engineered by encapsulating DTXL or PTXL within the PLGA micronetwork and nanoformulated DTXL (nanoDTXL) or PTXL (nanoPTXL) within the PVA microlayer.

View Article and Find Full Text PDF

The cell interaction, mechanism of cell entry and intracellular fate of surface decorated nanoparticles are known to be affected by the surface density of targeting agents. However, the correlation between nanoparticles multivalency and kinetics of the cell uptake process and disposition of intracellular compartments is complicated and dependent on a number of physicochemical and biological parameters, including the ligand, nanoparticle composition and colloidal properties, features of targeted cells, etc. Here, we have carried out an in-depth investigation on the impact of increasing folic acid density on the kinetic uptake process and endocytic route of folate (FA)-targeted fluorescently labelled gold nanoparticles (AuNPs).

View Article and Find Full Text PDF