Publications by authors named "Cristiano P Borges"

Nanofiltration (NF) has been used as the default sulfate removal process in platforms to treat seawater for water flooding. Seawater is generally pretreated by chlorination and cartridge filters to reduce fouling of the membranes; however, this pretreatment is insufficient to provide water quality high enough to maintain the productivity of the NF membranes. In this study, the performances of two different pretreatment routes were evaluated.

View Article and Find Full Text PDF

Ceramic membranes have been widely used in oil-water treatment; however, membrane fouling remains a challenge that must be addressed to improve the process feasibility. A thin layer of polydopamine (PDA) was dynamically deposited on the surface of the alumina hollow fiber membranes to reduce oil adhesion. The PDA-alumina membranes were characterized by using SEM-EDS, AFM, and water contact angle measurements.

View Article and Find Full Text PDF

The high demand for food and energy imposed by the increased life expectancy of the population has driven agricultural activity, which is reflected in the larger quantities of agro-industrial waste generated, and requires new forms of use. Brazil has the greatest biodiversity in the world, where corn is one of the main agricultural genres, and where over 40% of the waste generated is from cobs without an efficient destination. With the aim of the valorization of these residues, we proposed to study the immobilization of laccase from spp.

View Article and Find Full Text PDF

The presence of 17α-ethinylestradiol (EE2) in water bodies and its potential risks to human health and the environment have been frequently described in the literature, in addition to its limited removal in conventional wastewater treatment plants. Many studies have evaluated this removal by advanced processes, including photodegradation and membrane separation. A significant number of studies also assess the economic analysis of these technologies.

View Article and Find Full Text PDF

Synthetic hormone 17α-ethinylestradiol (EE2) is not completely removed by conventional wastewater treatment plants and therefore is often detected in surface and groundwater, sludge and sediments. Due to its persistence in the environment and its estrogenic potential, a high removal of EE2 from wastewaters before its disposal has become a concern from an environmental point of view, particularly when considering urban reuse applications. This work investigated the application of advanced processes to treat synthetic municipal wastewater containing EE2 after treatment in a membrane bioreactor (MBR).

View Article and Find Full Text PDF

This work explored the use of ozonation and photoperoxidation before the microfiltration process to reduce fouling. Produced water was synthesized with salt, viscosifier, and surfactant. The additives influence on membrane fouling was evaluated.

View Article and Find Full Text PDF

Silver nanoparticles were loaded in microfiltration membranes by sputtering technique for the development of biocidal properties and biofouling resistance. This technology allows good adhesion between silver nanoparticles and the membranes, and fast deposition rate. The microfiltration membranes (15 wt.

View Article and Find Full Text PDF

Despite the regenerative potential of the Peripheral Nervous System (PNS), injuries with loss of a nerve segment make the functional recovery a challenge. This work aimed to investigate the effects of the association of biodegradable conduits of poly (lactic acid) (PLA) with human adipose-derived stem cells (hADSCs) on the regeneration of the sciatic nerve. C57BL / 6 male mice were submitted to sciatic nerve transection followed by tubulization with PLA conduit.

View Article and Find Full Text PDF

Poly(lactic acid) (PLA)-containing nerve guidance conduits (NGCs) are currently being investigated for nerve repair as an alternative to autograft, which leads to permanent functional impairment in the territory innervated by the removed nerve. Combination of polymers modifies the physical properties of the conduits, altering their nerve-guidance properties. Conduits made from PLA-only or combined with other polymers have been used successfully for nerve repair, but their efficiency has not been compared.

View Article and Find Full Text PDF

Background: Membrane separation is an established technological process, and since 1980s, it has been used commercially at large industrial plants worldwide. Water and wastewater disinfection is one of the applications of membrane technologies, but fouling and biofouling are still a challenge for the sector. The use of silver nanoparticles in membranes has attracted research interest because of their biocidal action.

View Article and Find Full Text PDF

Polymeric biomaterials are often used for stimulating nerve regeneration. Among different conduits, poly(lactide acid) - PLA polymer is considered to be a good substrate due to its biocompatibility and resorbable characteristics. This polymer is an aliphatic polyester which has been mostly used in biomedical application.

View Article and Find Full Text PDF

In this paper, the use of powered activated carbon (PAC) in membrane bioreactor (MBR) employed in the treatment of bleach pulp mill effluents was evaluated. The MBR was operated with hydraulic residence time of 9.5 h and PAC concentration of 10 g/L.

View Article and Find Full Text PDF

The types of treatment most commonly used by pulp mills are biological treatments in combination with sedimentation or coagulation/flocculation as pretreatment. The main issues faced by these types of treatment are low efficiency in the removal of organic matter and the loss of aggregate value for the recovered fiber. Therefore, this study aims to evaluate the use of microfiltration (MF) combined with a membrane bioreactor (MBR) for the treatment of bleach pulp mill effluents.

View Article and Find Full Text PDF

The structural stability of metmyoglobin in organic solvents and cosolvents was investigated aiming the choice of a suitable medium to perform its dissolution with maintenance of the native folding. The spectroscopic behavior of metmyoglobin solution in UV-Visible and circular dichroism was used to evaluate the solubility and the secondary structure. The results were dependable of the chemical structure of the organic compounds, their polarity and content, in the case of cosolvents.

View Article and Find Full Text PDF

Rhamnolipids have been pointed out as promising biosurfactants. The most studied microorganisms for the aerobic production of these molecules are the bacteria of the genus Pseudomonas. The aim of this work was to produce a rhamnolipid-type biosurfactant in a bench-scale bioreactor by one strain of Pseudomonas aeruginosa isolated from oil environments.

View Article and Find Full Text PDF