In this study, a sequencing batch reactor (SBR) with aerobic granular sludge (AGS) was operated with synthetic wastewater containing environmental relevant concentrations of 17β-estradiol (E2), 17α-ethinylestradiol (EE2) and sulfamethoxazole (SMX). Despite the presence of the studied PhAC, the granular fraction clearly predominated (TSS/TSS ranging from 0.82 to 0.
View Article and Find Full Text PDFProtozoa and metazoa biota communities in biological wastewater treatment plants (WWTP) are known to be dependent of both the plant type (oxidation ditch, trickling filter, conventional activated sludge, among others) and the working operational conditions (incoming effluent characteristics, toxics presence, organic load, aeration, hydraulic and sludge retention times, nitrification occurrence, etc.). Thus, for analogous WWTP operating in equivalent operating conditions, similar protozoa and metazoa communities can be found.
View Article and Find Full Text PDFPolyhydroxyalkanoates (PHAs) produced from mixed microbial cultures (MMC), regarded as potential substitutes of petrochemical plastics, can be found as intracellular granules in various microorganisms under limited nutrient conditions and excess of carbon source. PHA is traditionally quantified by laborious and time-consuming chromatography analysis, and a simpler and faster method to assess PHA contents from MMC, such as quantitative image analysis (QIA), is of great interest. The main purpose of the present work was to upgrade a previously developed QIA methodology (as reported by Mesquita et al.
View Article and Find Full Text PDFActivated sludge systems are prone to be affected by foaming occurrences causing the sludge to rise in the reactor and affecting the wastewater treatment plant (WWTP) performance. Nonetheless, there is currently a knowledge gap hindering the development of foaming events prediction tools that may be fulfilled by the quantitative monitoring of AS systems biota and sludge characteristics. As such, the present study focuses on the assessment of foaming events in full-scale WWTPs, by quantitative protozoa, metazoa, filamentous bacteria, and sludge characteristics analysis, further used to enlighten the inner relationships between these parameters.
View Article and Find Full Text PDFPolyhydroxyalkanoates (PHA) can be produced and intracellularly accumulated as inclusions by mixed microbial cultures (MMC) for bioplastic production and in enhanced biological phosphorus removal (EBPR) systems. Classical methods for PHA quantification use a digestion step prior to chromatography analysis, rendering them labor intensive and time-consuming. The present work investigates the use of two quantitative image analysis (QIA) procedures specifically developed for PHA inclusions identification and quantification.
View Article and Find Full Text PDFA rapid methodology for intracellular storage polyphosphate (poly-P) identification and monitoring in enhanced biological phosphorus removal (EBPR) systems is proposed based on quantitative image analysis (QIA). In EBPR systems, 4',6-diamidino-2-phenylindole (DAPI) is usually combined with fluorescence in situ hybridization to evaluate the microbial community. The proposed monitoring technique is based on a QIA procedure specifically developed for determining poly-P inclusions within a biomass suspension using solely DAPI by epifluorescence microscopy.
View Article and Find Full Text PDFThe present study focuses on predicting the concentration of intracellular storage polymers in enhanced biological phosphorus removal (EBPR) systems. For that purpose, quantitative image analysis techniques were developed for determining the intracellular concentrations of PHA (PHB and PHV) with Nile blue and glycogen with aniline blue staining. Partial least squares (PLS) were used to predict the standard analytical values of these polymers by the proposed methodology.
View Article and Find Full Text PDF