Publications by authors named "Cristianne J F Rijcken"

Controlled manufacturing and long-term stability are key challenges in the development and translation of nanomedicines. This is exemplified by the mRNA-nanoparticle vaccines against COVID-19, which require (ultra-)cold temperatures for storage and shipment. Various cryogenic protocols have been explored to prolong nanomedicine shelf-life.

View Article and Find Full Text PDF

Nanomedicines have created a paradigm shift in healthcare. Yet fundamental barriers still exist that prevent or delay the clinical translation of nanomedicines. Critical hurdles inhibiting clinical success include poor understanding of nanomedicines' physicochemical properties, limited exposure in the cell or tissue of interest, poor reproducibility of preclinical outcomes in clinical trials, and biocompatibility concerns.

View Article and Find Full Text PDF

Nanocarriers have shown their ability to extend the circulation time of drugs, enhance tumor uptake, and tune drug release. Therapeutic peptides are a class of drug compounds in which nanocarrier-mediated delivery can potentially improve their therapeutic index. To this end, there is an urgent need for orthogonal covalent linker chemistry facilitating the straightforward on-the-resin peptide generation, nanocarrier conjugation, as well as the triggered release of the peptide in its native state.

View Article and Find Full Text PDF

The site specific attachment of the reactive TMTHSI-click handle to the N-terminus of peptides and proteins is described. The resulting molecular constructs can be used in strain-promoted azide alkyne cycloaddition (SPAAC) for reaction with azide containing proteins , antibodies, peptides, nanoparticles, fluorescent dyes, chelators for radioactive isotopes and SPR-chips .

View Article and Find Full Text PDF

The recently developed compound, tetramethylthiocycloheptyne sulfoximine (TMTHSI), has shown to be a promising strained alkyne for strain-promoted azide-alkyne cycloaddition (SPAAC), metal-free click chemistry. This research explores the properties of TMTHSI-based compounds via three aspects: (1) large-scale production, (2) unique stability in acidic conditions and its subsequent use in peptide synthesis, and (3) the functionalization of antibodies. Here, it is shown that (1) scale-up is achieved on a scale of up to 100 g.

View Article and Find Full Text PDF

Core-crosslinked polymeric micelles (CCPMs) are an attractive class of nanocarriers for drug delivery. Two crosslinking approaches to form CCPMs exist: either via a low-molecular-weight crosslinking agent to connect homogeneous polymer chains with reactive handles or via cross-reactive handles on polymers to link them to each other (complementary polymers). Previously, CCPMs based on methoxy poly(ethylene glycol)--poly[-(2-hydroxypropyl) methacrylamide-lactate] (mPEG--PHPMAmLac) modified with thioesters were crosslinked via native chemical ligation (NCL, a reaction between a cysteine residue and thioester resulting in an amide bond) using a bifunctional cysteine containing crosslinker.

View Article and Find Full Text PDF

Objective: Recurrent platinum-resistant ovarian cancer has a poor prognosis with limited therapeutic options. Sub-therapeutic intra-tumoral drug concentrations may add to therapy resistance. CPC634 (docetaxel entrapped in CriPec nanoparticles) was designed to enhance tumor accumulation of drug with localized drug release at the target site to increase therapeutic efficacy.

View Article and Find Full Text PDF

Nanomedicines are used to improve the efficacy and safety of pharmacotherapeutic interventions. Unraveling the biological behavior of nanomedicines, including their biodistribution and target site accumulation, is essential to establish design criteria that contribute to superior performance. CriPec® technology is based on amphiphilic methoxy-poly(ethylene glycol)-b-poly[N-(2-hydroxypropyl) methacrylamide lactate] (mPEG-b-pHPMAmLac) block copolymers, which are designed to upon self-assembly covalently entrap active pharmaceutical ingredients (API) in core-crosslinked polymeric micelles (CCPM).

View Article and Find Full Text PDF

Core-cross-linked polymeric micelles (CCPMs) are a promising nanoparticle platform due to favorable properties such as their long circulation and tumor disposition exploiting the enhanced permeability and retention (EPR) effect. Sustained release of covalently linked drugs from the hydrophobic core of the CCPM can be achieved by a biodegradable linker that connects the drug and the core. This study investigates the suitability of trityl-based linkers for the design of acid-triggered native active pharmaceutical ingredient (API) release from CCPMs.

View Article and Find Full Text PDF

Polymeric micelles are increasingly explored for tumor-targeted drug delivery. CriPec® technology enables the generation of core-crosslinked polymeric micelles (CCPMs) based on thermosensitive (mPEG-b-pHPMAmLac) block copolymers, with high drug loading capacity, tailorable size, and controlled drug release kinetics. In this study, we decorated clinical-stage CCPM with the αβ integrin-targeted cyclic arginine-glycine-aspartic acid (cRGD) peptide, which is one of the most well-known active targeting ligands evaluated preclinically and clinically.

View Article and Find Full Text PDF

Several FDA/EMA-approved nanomedicines have demonstrated improved pharmacokinetics and toxicity profiles compared to their conventional chemotherapeutic counterparts. The next step to increase therapeutic efficacy depends on tumor accumulation, which can be highly heterogeneous. A clinical tool for patient stratification is urgently awaited.

View Article and Find Full Text PDF

Docetaxel entrapped nanoparticle CPC634 is associated with dose-related skin toxicity that resembles conventional docetaxel (Cd)-related skin toxicity. This study compared the cutaneous pharmacokinetics and pharmacodynamics of docetaxel and CPC634. In this randomised cross-over study, patients with solid tumours received one cycle of CPC634 and Cd (both at 75 mg/m).

View Article and Find Full Text PDF

The restrictive nature of the blood-brain barrier (BBB) prevents efficient treatment of many brain diseases. Focused ultrasound in combination with microbubbles has shown to safely and transiently increase BBB permeability. Here, the potential of Acoustic Cluster Therapy (ACT®), a microbubble platform specifically engineered for theranostic purposes, to increase the permeability of the BBB and improve accumulation of IRDye® 800CW-PEG and core-crosslinked polymeric micelles (CCPM) in the murine brain, was studied.

View Article and Find Full Text PDF

We describe the development of TMTH-ulfoxmine (TMTH) as a superior click reagent. This reagent combines a great reactivity, with small size and low hydrophobicity and compares outstandingly with existing click reagents. TMTHSI can be conveniently functionalized with a variety of linkers allowing attachment of a diversity of small molecules and (peptide, nucleic acid) biologics.

View Article and Find Full Text PDF

Background: CriPec technology enables the generation of drug-entrapped biodegradable core-crosslinked polymeric micelles (CCPM) with high drug loading capacity, tailorable size, and drug release kinetics. Docetaxel (DTX)-entrapped CCPM, also referred to as CPC634, have demonstrated favorable pharmacokinetics, tolerability, and enhanced tumor uptake in patients. Clinical efficacy evaluation is ongoing.

View Article and Find Full Text PDF

Core-crosslinked polymeric micelles (CCPM) based on PEG-b-pHPMA-lactate are clinically evaluated for the treatment of cancer. We macroscopically and microscopically investigated the biodistribution and target site accumulation of CCPM. To this end, fluorophore-labeled CCPM were intravenously injected in mice bearing 4T1 triple-negative breast cancer (TNBC) tumors, and their localization at the whole-body, tissue and cellular level was analyzed using multimodal and multiscale optical imaging.

View Article and Find Full Text PDF

Background: CPC634 is docetaxel entrapped in core-cross linked polymeric micelles. In preclinical studies, CPC634 demonstrated enhanced pharmacokinetics and improved therapeutic index. This phase I dose escalation study is the first-in-human study with CPC634.

View Article and Find Full Text PDF

Covalent entrapment of drug molecules within core-crosslinked polymeric micelles (CCPM) represents an attractive approach to improve their therapeutic index. As an alternative to the most commonly employed intravenous (i.v.

View Article and Find Full Text PDF

To optimally exploit the potential of (tumor-) targeted nanomedicines, platform technologies are needed in which physicochemical and pharmaceutical properties can be tailored according to specific medical needs and applications. We here systematically customized the properties of core-crosslinked polymeric micelles (CCPM). The micelles were based on mPEG-b-pHPMAmLac (i.

View Article and Find Full Text PDF

Therapeutic peptides are highly attractive drugs for the treatment of various diseases. However, their poor pharmacokinetics due to rapid renal elimination limits their clinical applications. In this study, a model hormone peptide, leuprolide, was covalently linked to core-cross-linked polymeric micelles (CCL-PMs) via two different hydrolysable ester linkages, thereby yielding a nanoparticulate system with tuneable drug release kinetics.

View Article and Find Full Text PDF

As an emerging research direction, nanomedicine has been increasingly utilized to treat inflammatory diseases. In this head-to-head comparison study, four established nanomedicine formulations of dexamethasone, including liposomes (L-Dex), core-cross-linked micelles (M-Dex), slow releasing polymeric prodrugs (P-Dex-slow), and fast releasing polymeric prodrugs (P-Dex-fast), were evaluated in an adjuvant-induced arthritis rat model with an equivalent dose treatment design. It was found that after a single i.

View Article and Find Full Text PDF

Various different passively and actively targeted nanomedicines have been designed and evaluated over the years, in particular for the treatment of cancer. Reasoning that the potential of ligand-modified nanomedicines can be substantially improved if intrinsically active targeting moieties are used, we have here set out to assess the in vivo efficacy of nanobody-modified core-crosslinked polymeric micelles containing covalently entrapped doxorubicin. Nanobody-modified polymeric micelles were found to inhibit tumor growth even in the absence of a drug, and nanobody-modified micelles containing doxorubicin were significantly more effective than nanobody-free micelles containing doxorubicin.

View Article and Find Full Text PDF

Polymerizable and hydrolytically cleavable dexamethasone (DEX, red dot in picture) derivatives were covalently entrapped in core-cross-linked polymeric micelles that were prepared from a thermosensitive block copolymer (yellow and gray building block). By varying the oxidation degree of the thioether in the drug linker, the release rate of DEX could be controlled. The DEX-loaded micelles were used for efficient treatment of inflammatory arthritis in two animal models.

View Article and Find Full Text PDF

The aim of this study was to develop poly(ethylene glycol)-b-poly[N-(2-hydroxypropyl) methacrylamide-lactate] (mPEG-b-p(HPMAm-Lac(n))) core-crosslinked thermosensitive biodegradable polymeric micelles suitable for active tumor targeting, by coupling the anti-EGFR (epidermal growth factor receptor) EGa1 nanobody to their surface. To this end, PEG was functionalized with N-succinimidyl 3-(2-pyridyldithio)-propionate (SPDP) to yield a PDP-PEG-b-p(HPMAm-Lac(n)) block copolymer. Micelles composed of 80% mPEG-b-p(HPMAm-Lac(n)) and 20% PDP-PEG-b-p(HPMAm-Lac(n)) were prepared and lysozyme (as a model protein) was modified with N-succinimidyl-S-acetylthioacetate, deprotected with hydroxylamine hydrochloride and subsequently coupled to the micellar surface.

View Article and Find Full Text PDF

Natural bioactive compounds have been studied for a long time for their chemopreventive and therapeutic potential in several chronic inflammatory diseases, including cancer. However, their physicochemical properties generally result in poor chemical stability and lack of in vivo bioavailability. Very few human clinical trials have addressed absorption, distribution, metabolism, and excretion of these compounds in relation to efficacy.

View Article and Find Full Text PDF