Publications by authors named "Cristiane S Farinas"

Controlled release of beneficial microorganisms in agriculture by encapsulation in biopolymeric matrices can improve biofertilizer efficacy, but it requires the modulation of properties to ensure more efficient and predictable release patterns. This study investigated the effect of a starch-based system to protect and release Priestia megaterium (former Bacillus megaterium) processed as films modified with potential cell-protective additives (maltodextrin, cellulose, and bentonite). The release kinetics, physicochemical and morphological film characteristics, and their protection against UV (Ultraviolet) radiation and temperature were evaluated.

View Article and Find Full Text PDF

Although the production of carboxymethylcellulose from different raw materials is commercial, its preparation from agro-industrial residues has still been poorly explored in terms of performance, cost-effectiveness, and sustainability. Here, sugarcane bagasse was used as raw material for the carboxymethylcellulose (CMCb) synthesis within the biorefinery context. Sequential treatments were used for the removal of hemicellulose and lignin and the isolation of cellulose, whose conversion into CMCb was carried out through treatments with NaOH and monochloroacetic acid (MCA).

View Article and Find Full Text PDF

The advancement of fungal biocontrol agents depends on replacing cereal grains with low-cost agro-industrial byproducts for their economical mass production and development of stable formulations. We propose an innovative approach to develop a rice flour-based formulation of the beneficial biocontrol agent Trichoderma asperelloides CMAA1584 designed to simulate a micro-bioreactor within the concept of full biorefinery process, affording in situ conidiation, extended shelf-life, and effective control of Sclerotinia sclerotiorum, a devastating pathogen of several dicot agricultural crops worldwide. Rice flour is an inexpensive and underexplored byproduct derived from broken rice after milling, capable of sustaining high yields of conidial production through our optimized fermentation-formulation route.

View Article and Find Full Text PDF

This study explores the enhancement of phosphate rock (PR) solubilization through solid-state fermentation (SSF) by optimizing oxalic acid production using Aspergillus niger. Key process parameters, including the use of agro-industrial by-products (sugarcane bagasse (SCB), wheat bran (WB), soybean bran (SB)), pH levels, sucrose supplementation, and methanol addition, were systematically evaluated through sequential experimental designs. The results identified SCB and SB in a 1:1 ratio as the most effective substrate.

View Article and Find Full Text PDF

Despite being composed of recyclable materials, the main technological challenge of multilayer carton packs involves the efficient decompatibilization of the cellulosic, polymeric, and metallic phases. Here, a simple two-step mechanochemical process is described that uses only aqueous media and mechanical force to promote phase separation in order to fully recycle multi-layer carton packaging. The first step produces value-added micro- and nanocellulose, while in the second step, aluminum is extracted, forming precipitated aluminum and aluminum oxyhydroxides.

View Article and Find Full Text PDF

The use of Bacillus as biofertilizer is a sustainable strategy to increase agricultural productivity, but it still requires the development of formulations to protect cells from stressful conditions. Ionotropic gelation using a pectin/starch matrix is a promising encapsulation strategy to achieve this goal. By incorporating additives such as montmorillonite (MMT), attapulgite (ATP), polyethylene glycol (PEG), and carboxymethyl cellulose (CMC), the properties of these encapsulated products could be further improved.

View Article and Find Full Text PDF

Microorganism encapsulation protects them from stressful conditions and assists in maintaining their viability, being especially beneficial when the carrier material is a renewable and biodegradable biopolymer, such as starch. Here, a systematic mapping was performed to provide a current overview on the use of starch-based systems for microbial encapsulation. Following well-established guidelines, a systematic mapping was conducted and the following could be drawn: 1) there was a significant increase in publications on microbial encapsulation using starch over the past decade, showing interest from the scientific community, 2) ionotropic gelation, emulsification and spray drying are the most commonly used techniques for starch-based microbial encapsulation, and 3) starch play important functions in the encapsulation matrix such as assisting in the survival of the microorganisms.

View Article and Find Full Text PDF

Cellulose nanostructures obtained from lignocellulosic biomass by the enzymatic route can offer advantages in terms of material properties and processing sustainability. However, most of the enzymatic cocktails commonly used in the saccharification of biomass are designed to promote the complete depolymerization of the cellulose structure into soluble sugars. Here, investigation was made of the way that the action of different commercially available cellulase enzyme cocktails can affect the production of nanocellulose.

View Article and Find Full Text PDF

The use of phosphate rocks as low-solubility phosphorus fertilizers has been promoted to reduce the environmental impacts of agriculture, but adequate nutrient uptake by plants depends on solubilization of the rock, driven by soil microorganisms. Here, investigation was made of the microbial solubilization of low-solubility phosphate rocks, together with simultaneous bioprotective action involving the biocontrol of microorganisms. The aim was to enhance function and value by delivering two effects using a single bio-based product, in accordance with the concept of a "bioreactor-in-a-granule" system.

View Article and Find Full Text PDF

Organic acids produced by soil microorganisms can be useful to promote the release of potassium (K) from potassium mineral rocks (KR), but the complexity of low reactivity minerals limits K solubilization and their use as fertilizer. Here, we investigate the ways that different organic acids (gluconic, oxalic, and citric) can affect the solubilization of potassium minerals, in order to propose process strategies to improve their solubility. For this, evaluations were performed using the model minerals KR (sedimentary mineral), KR (igneous mineral), and KCl (commercial fertilizer).

View Article and Find Full Text PDF

The manufacture of asbestos materials has been banished worldwide due to their toxicity, but discarding the existing wastes remains a challenge. We investigated an alternative mechanochemical method to treat asbestos-cement materials by loading them with potassium and phosphorus from KHPO during the milling process to obtain a product used as liming and soil conditioner. The results showed total asbestos fibrous elimination after 7 to 8 h of milling.

View Article and Find Full Text PDF

On-site monitoring the presence of pesticides on crops and food samples is essential for precision and post-harvest agriculture, which demands nondestructive analytical methods for rapid, low-cost detection that is not achievable with gold standard methods. The synergy between eco-friendly substrates and printed devices may lead to wearable sensors for decentralized analysis of pesticides in precision agriculture. In this paper we report on a wearable non-enzymatic electrochemical sensor capable of detecting carbamate and bipyridinium pesticides on the surface of agricultural and food samples.

View Article and Find Full Text PDF

Endoglucanase and xylanase are critical enzymes for liquefaction and enzyme hydrolysis of high solids lignocellulosic biomass to facilitate its transport and production of desired derived products. Here is reported how combinations of different spore concentrations and pH influence microbial morphology, and how this may be used to direct expression and secretion of enzymes by Aspergillus niger. While xylanase production is not affected by A.

View Article and Find Full Text PDF

In this study, ginger residue from juice production was evaluated as a raw material resource for preparation of nanofiber hydrogels with multifunctional properties for advanced wound dressing applications. Alkali treatment was applied to adjust the chemical composition of ginger fibers followed by TEMPO (2,2,6,6-tetramethylpiperidine-1-oxyl radical)-mediated oxidation prior to nanofiber isolation. The effect of alkali treatment on hydrogel properties assembled through vacuum filtration without addition of any chemical cross-linker was evaluated.

View Article and Find Full Text PDF

Intensive fertilization has been required to provide nutrients for plant growth under the current agricultural practices being applied to meet the global food demands. Micronutrients such as zinc, manganese, and copper are required in small quantities when compared to macronutrients (such as nitrogen, phosphorus and potassium), but they are essential for the plant growth cycle and consequently for increasing productivity. Mineral oxides such as ZnO, MnO, and CuO are used in agriculture as micronutrient sources, but their low solubility limits practical applications in plant nutrition.

View Article and Find Full Text PDF

The manner in which added non-catalytic proteins during enzymatic hydrolysis of lignocellulosic substrates enhances hydrolysis mechanisms is not completely understood. Prior research has indicated that a reduction in the non-specific adsorption of enzymes on lignin, and deactivation of enzymes exposed to air-liquid interface provide rationale. This work investigated root causes including effects of the air-liquid interface on non-catalytic proteins, and effects of lignin on endoglucanase.

View Article and Find Full Text PDF

The hydrodynamic environment in bioreactors affects the oxygen transfer rate and the shear conditions during microbial cultivations. Therefore, assessment of the effect of the hydrodynamic environment on cellular morphology can contribute to favoring the production of metabolites of interest. The aim of this work was to use image analysis in order to quantify the fragmentation of Aspergillus niger pellets in a conventional bioreactor operated using different impeller speeds, air flow rates, and impeller configurations including Rushton turbines and Elephant Ear impellers, with evaluation of the influence of the hydrodynamic environment on the production of cellulolytic enzymes.

View Article and Find Full Text PDF

Trichoderma harzianum has attracting attention for its potential alternative use in biofuel production, due to a recognized competence for high diversity glycoside hydrolases (GH) enzyme complex, including higher β-glucosidases and auxiliary proteins, using low-cost carbon sources. This strain constitutively overexpressed the global regulator putative methyltransferase - LAE1, in order to improve the GHs production. The recombinant strain achieved 79-fold increase in lae1 expression and high GHs productivity.

View Article and Find Full Text PDF

Many industrial enzymes can be highly glycosylated, including the β-glucosidase enzymes. Although glycosylation plays an important role in many biological processes, such chains can cause problems in the multipoint immobilization techniques of the enzymes, since the glycosylated chains can cover the reactive groups of the protein (e.g.

View Article and Find Full Text PDF

The use of additives in the enzymatic saccharification of lignocellulosic biomass can have positive effects, decreasing the unproductive adsorption of cellulases on lignin and reducing the loss of enzyme activity. Soybean protein stands out as a potential lignin-blocking additive, but the economic impact of its use has not previously been investigated. Here, a systematic evaluation was performed of the process conditions, together with a techno-economic analysis, for the use of soybean protein in the saccharification of hydrothermally pretreated sugarcane bagasse in the context of an integrated 1G-2G ethanol biorefinery.

View Article and Find Full Text PDF

Hydroxyapatite (HA) nanoparticles are promising materials for enzyme immobilization, since they provide a high specific surface area for enzyme loading and can also be modified with metal ions (HA-Me) to enable interaction with proteins. The adsorption of proteins on HA-Me has been explored for purification purposes, while the use of this material as a support for the immobilization of enzymes remains to be further investigated. Xylanase is an enzyme of considerable industrial interest, being used in the biofuel, pharmaceutical, pulp, and food & beverage sectors, among others.

View Article and Find Full Text PDF

Soluble coffee offers the combined benefits of high added value and practicality for its consumers. The hydrolysis of coffee polysaccharides by the biochemical route, using enzymes, is an eco-friendly and sustainable way to improve the quality of this product, while contributing to the implementation of industrial processes that have lower energy requirements and can reduce environmental impacts. This work describes the production of hydrolytic enzymes by solid-state fermentation (SSF), cultivating filamentous fungi on waste from the coffee industry, followed by their application in the hydrolysis of waste coffee polysaccharides from soluble coffee processing.

View Article and Find Full Text PDF

In the original version of this article, under Calculation of Immobilization Parameters heading, the presentation of the equations are incorrect. The correct presentation of the equations are given below.

View Article and Find Full Text PDF

Isolation and screening of new fungal strains from extreme and understudied environments, such as caves, is a promising approach to find higher yields enzyme producers. Cellulolytic fungal strains isolated from a Brazilian cave were evaluated for their enzymatic production after submerged (SmF) and solid-state fermentation (SSF). After SmF, three strains were selected for their high enzymatic activities: Aspergillus ustus for endoglucanase (4.

View Article and Find Full Text PDF

The enzyme phytase has important applications in animal feed, because it favors the bioavailability of phosphorus present in phytate, an antinutritional compound widely found associated with plant proteins. However, for feed applications, the phytase must withstand high temperatures during the feed pelleting process, as well as the gastrointestinal conditions of the animal. This work evaluates the feasibility of immobilizing phytase on hydroxyapatite (HA) nanoparticles, in order to improve its properties.

View Article and Find Full Text PDF

A PHP Error was encountered

Severity: Warning

Message: fopen(/var/lib/php/sessions/ci_sessionvqcislgv7mk2tuj24uup41hjug1ahgfo): Failed to open stream: No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 177

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once

A PHP Error was encountered

Severity: Warning

Message: session_start(): Failed to read session data: user (path: /var/lib/php/sessions)

Filename: Session/Session.php

Line Number: 137

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once