The study aimed to explore the impact of strength training on long-term memory in adult and middle-aged rodents, specifically male Wistar rats aged 9 and 20 months. These rats were divided into two groups: one sedentary (SED) and the other trained (ST) for a period of 12 weeks. The strength training involved squatting exercises using adapted equipment, while the sedentary group maintained their regular, non-exercised routine.
View Article and Find Full Text PDFEvidence has demonstrated the hippocampal cholinergic system and the mammalian target of rapamycin (mTOR) participation during the memory formation of aversive events. This study assessed the role of these systems in the hippocampus for the extinction memory process by submitting male Wistar rats to fear-motivated step-down inhibitory avoidance (IA). The post-extinction session administration of the nicotinic and muscarinic cholinergic receptor antagonists, mecamylamine and scopolamine, respectively, both at doses of 2 µg/µl/side, and rapamycin, an mTOR inhibitor (0.
View Article and Find Full Text PDFSocial recognition is the ability of animals to identify and recognize a conspecific. The consolidation of social stimuli in long-term memory is crucial for the establishment and maintenance of social groups, reproduction and species survival. Despite its importance, little is known about the circuitry and molecular mechanisms involved in the social recognition memory (SRM).
View Article and Find Full Text PDFSocial recognition memory (SRM) forms the basis of social relationships of animals. It is essential for social interaction and adaptive behavior, reproduction and species survival. Evidence demonstrates that social deficits of psychiatric disorders such as autism and schizophrenia are caused by alterations in SRM processing by the hippocampus and amygdala.
View Article and Find Full Text PDFNeurobiol Learn Mem
February 2020
Social recognition memory (SRM) enables the distinction between familiar and strange conspecifics, a fundamental ability for sociable species, such as rodents and humans. There is mounting evidence that the medial prefrontal cortex plays a prominent role both in shaping social behavior and in recognition memory. Glutamate is the major excitatory neurotransmitter in the brain, and activity of its ionotropic receptors is known to mediate both synaptic plasticity and consolidation of various types of memories.
View Article and Find Full Text PDFBehav Brain Res
October 2019
Extinction is the learned inhibition of retrieval. It is the mainstay of exposure therapy, which is widely used to treat drug addiction, phobias and fear-related pathologies such as post-traumatic stress disorder. The serotonin (5-HT) system is positioned to modulate the extinction circuitry via ascending 5-HT projections that innervate certain brain structures including the hippocampus and the basolateral amygdala (BLA).
View Article and Find Full Text PDFExtinction of contextual fear conditioning (CFC) in the presence of a familiar nonfearful conspecific (social support), such as that of others tasks, can occur regardless of whether the original memory is retrieved during the extinction training. Extinction with social support is blocked by the protein synthesis inhibitors anisomycin and rapamycin and by the inhibitor of gene expression 5,6-dichloro-1-β-d-ribofuranosylbenzimidazole infused immediately after extinction training into the ventromedial prefrontal cortex (vmPFC) but unlike regular CFC extinction not in the CA1 region of the dorsal hippocampus. So social support generates a form of learning that differs from extinction acquired without social support in terms of the brain structures involved.
View Article and Find Full Text PDFMethylphenidate (MPH) is a widely prescribed drug for the treatment of attention-deficit hyperactivity disorder. Findings in the literature suggest that the effects of MPH on memory may result from increased extracellular levels of norepinephrine (NE) and dopamine (DA). Here, we report that the systemic administration of MPH before the acquisition phase in a social discrimination task impaired the retrieval of the social recognition memory (SRM), but made it state-dependent: another administration of MPH before the retention test recovered the SRM.
View Article and Find Full Text PDFNeurosci Lett
February 2018
Cognitive demands can influence the adaptation of walking, a crucial skill to maintain body stability and prevent falls. Whilst previous research has shown emotional load tunes goal-directed movements, little attention has been given to this finding. This study sought to assess the effects of suffering an extinction-resistant memory on skilled walking performance in adult rats, as an indicator of walking adaptability.
View Article and Find Full Text PDFSocial recognition memory (SRM) is crucial for reproduction, forming social groups, and species survival. Despite its importance, SRM is still relatively little studied. Here we examine the participation of the CA1 region of the dorsal hippocampus (CA1) and the basolateral amygdala (BLA) and that of dopaminergic, noradrenergic, and histaminergic systems in both structures in the consolidation of SRM.
View Article and Find Full Text PDFRecent discoveries demonstrated that recruitment of alternative brain circuits permits compensation of memory impairments following damage to brain regions specialized in integrating and/or storing specific memories, including both dorsal hippocampus and basolateral amygdala (BLA). Here, we first report that the integrity of the brain histaminergic system is necessary for long-term, but not for short-term memory of step-down inhibitory avoidance (IA). Second, we found that phosphorylation of cyclic adenosine monophosphate (cAMP) responsive-element-binding protein, a crucial mediator in long-term memory formation, correlated anatomically and temporally with histamine-induced memory retrieval, showing the active involvement of histamine function in CA1 and BLA in different phases of memory consolidation.
View Article and Find Full Text PDFExtinction is the learned inhibition of retrieval. Recently it was shown that a brief exposure to a novel environment enhances the extinction of contextual fear in rats, an effect explainable by a synaptic tagging-and-capture process. Here we examine whether this also happens with the extinction of another fear-motivated task, inhibitory avoidance (IA), and whether it depends on dopamine acting on D1 or D5 receptors.
View Article and Find Full Text PDFIn the present study we test the hypothesis that extinction is not a consequence of retrieval in unreinforced conditioned stimulus (CS) presentation but the mere perception of the CS in the absence of a conditioned response. Animals with cannulae implanted in the CA1 region of hippocampus were subjected to extinction of contextual fear conditioning. Muscimol infused intra-CA1 before an extinction training session of contextual fear conditioning (CFC) blocks retrieval but not consolidation of extinction measured 24 h later.
View Article and Find Full Text PDFExposure to a novel environment enhances the extinction of contextual fear. This has been explained by tagging of the hippocampal synapses used in extinction, followed by capture of proteins from the synapses that process novelty. The effect is blocked by the inhibition of hippocampal protein synthesis following the novelty or the extinction.
View Article and Find Full Text PDF