Mutation of a single residue within the recently identified lipid (diacylglycerol) recognition window of TRPC3 (G652A) was found to abolish channel activation via endogenous lipid mediators while retaining sensitivity to the non-lipid activator GSK1702934A (abb. GSK). The mechanism of this change in chemical sensing by TRPC3 was analysed by whole-cell and single channel electrophysiology as well as Ca imaging.
View Article and Find Full Text PDFWe investigated the role of Na/ Ca exchange (NCX) in the refilling of endoplasmic reticulum (ER) Ca in vascular endothelial cells under various conditions of cell stimulation and plasma membrane (PM) polarization. Better understanding of the mechanisms behind basic ER Ca content regulation is important, since current hypotheses on the possible ultimate causes of ER stress point to deterioration of the Ca transport mechanism to/from ER itself. We measured [Ca] temporal changes by Fura-2 fluorescence under experimental protocols that inhibit a host of transporters (NCX, Orai, non-selective transient receptor potential canonical (TRPC) channels, sarco/endoplasmic reticulum Ca ATPase (SERCA), Na/ K ATPase (NKA)) involved in the Ca communication between the extracellular space and the ER.
View Article and Find Full Text PDFBiochem Biophys Res Commun
March 2016
We set out to determine the membrane potential (Vm) of the endothelial cell line EA.hy926 and its sensitivity to the antimycotic amphotericin B (AmB), a commonly used antifungal component in cell culture media. We measured the endothelial Vm under various experimental conditions by patch clamp technique and found that Vm of AmB-treated cells is (-12.
View Article and Find Full Text PDF(S)-Hydroxymandelate synthase (Hms) is a nonheme Fe(II) dependent dioxygenase that catalyzes the oxidation of 4-hydroxyphenylpyruvate to (S)-4-hydroxymandelate by molecular oxygen. In this work, the substrate promiscuity of Hms is characterized in order to assess its potential for the biosynthesis of chiral α-hydroxy acids. Enzyme kinetic analyses, the characterization of product spectra, quantitative structure activity relationship (QSAR) analyses and in silico docking studies are used to characterize the impact of substrate properties on particular steps of catalysis.
View Article and Find Full Text PDFMononuclear nonheme iron enzymes (MNHEs) catalyze a range of very diverse reactions in O(2) metabolism, but they share a common principle active-site organization. To investigate a putative catalytic promiscuity of these enzymatic metal centers, we studied the reactivity of the 3-His ligated metal center of diketone cleaving enzyme (Dke1) toward non-native substrates, with a focus on alternative O(2) dependent reactions. From a screening approach, which aims at eliminating steric factors by including minimal substrate-substructures, three alternative, 'non-β-dicarbonyl-cleavage' reactions are identified, among them an unprecedented oxygenation of maltol.
View Article and Find Full Text PDF