Publications by authors named "Cristiana Cavina-Pratesi"

It is argued here that apperceptive object agnosia (generally now known as visual form agnosia) is in reality not a kind of agnosia, but rather a form of "imperception" (to use the term coined by Hughlings Jackson). We further argue that its proximate cause is a bilateral loss (or functional loss) of the visual form processing systems embodied in the human lateral occipital cortex (area LO). According to the dual-system model of cortical visual processing elaborated by Milner and Goodale (2006), area LO constitutes a crucial component of the ventral stream, and indeed is essential for providing the figural qualities inherent in our normal visual perception of the world.

View Article and Find Full Text PDF

Although the neural underpinnings of visually guided grasping and reaching have been well delineated within lateral and medial fronto-parietal networks (respectively), the contributions of subcomponents of visuomotor actions have not been explored in detail. Using careful subtraction logic, here we investigated which aspects of grasping, reaching, and pointing movements drive activation across key areas within visuomotor networks implicated in hand actions. For grasping tasks, we find activation differences based on the precision required (fine > coarse grip: anterior intraparietal sulcus, aIPS), the requirement to lift the object (grip + lift > grip: aIPS; dorsal premotor cortex, PMd; and supplementary motor area, SMA), and the number of digits employed (3-/5- vs.

View Article and Find Full Text PDF

Comparison between real and pantomimed actions is used in neuroscience to dissociate stimulus-driven (real) as compared to internally driven (pantomimed) visuomotor transformations, with the goal of testing models of vision (Milner & Goodale, 1995) and diagnosing neuropsychological deficits (apraxia syndrome). Real actions refer to an overt movement directed toward a visible target whereas pantomimed actions refer to an overt movement directed either toward an object that is no longer available. Although similar, real and pantomimed actions differ in their kinematic parameters and in their neural substrates.

View Article and Find Full Text PDF

There has been concentrated debate over four decades as to whether or not the nonhuman primate parietal cortex codes for intention or attention. In nonhuman primates, certain studies report results consistent with an intentional role, whereas others provide support for coding of visual-spatial attention. Until now, no one has yet directly contrasted an established motor "intention" paradigm with a verified "attention" paradigm within the same protocol.

View Article and Find Full Text PDF

Patient D.F. has a profound and enduring visual form agnosia due to a carbon monoxide poisoning episode suffered in 1988.

View Article and Find Full Text PDF

It is now established that the perception of tools engages a left-lateralized network of frontoparietal and occipitotemporal cortical regions. Nevertheless, the precise computational role played by these areas is not yet well understood. To address this question, we used functional MRI to investigate the distribution of responses to pictures of tools and hands relative to other object categories in the so-called "tool" areas.

View Article and Find Full Text PDF

Patient D.F. has a profound and enduring visual form agnosia due to a carbon monoxide poisoning episode suffered in 1988.

View Article and Find Full Text PDF

The visuo-motor channel hypothesis (Jeannerod, 1981) postulates that grasping movements consist of a grip and a transport component differing in their reliance on intrinsic vs. extrinsic object properties (e.g.

View Article and Find Full Text PDF

Patient DF, who developed visual form agnosia following ventral-stream damage, is unable to discriminate the width of objects, performing at chance, for example, when asked to open her thumb and forefinger a matching amount. Remarkably, however, DF adjusts her hand aperture to accommodate the width of objects when reaching out to pick them up (grip scaling). While this spared ability to grasp objects is presumed to be mediated by visuomotor modules in her relatively intact dorsal stream, it is possible that it may rely abnormally on online visual or haptic feedback.

View Article and Find Full Text PDF

Patient DF, an extensively-tested woman with visual form agnosia from ventral-stream damage, is able to scale her grip aperture to match a goal object's geometry when reaching out to pick it up, despite being unable to explicitly distinguish amongst objects on the basis of their different geometries. Using evidence from a range of sources, including functional MRI, we have proposed that she does this through a functionally intact visuomotor system housed within the dorsal stream of the posterior parietal lobe. More recently, however, Schenk (2012a).

View Article and Find Full Text PDF

Loss of shape recognition in visual-form agnosia occurs without equivalent losses in the use of vision to guide actions, providing support for the hypothesis of two visual systems (for "perception" and "action"). The human individual DF received a toxic exposure to carbon monoxide some years ago, which resulted in a persisting visual-form agnosia that has been extensively characterized at the behavioral level. We conducted a detailed high-resolution MRI study of DF's cortex, combining structural and functional measurements.

View Article and Find Full Text PDF

Optic ataxia is a neuropsychological disorder that affects the ability to interact with objects presented in the visual modality following either unilateral or bilateral lesions of the posterior parietal cortex (PPC). Patients with optic ataxia fail to reach accurately for objects, particularly when they are presented in peripheral vision. The present review will focus on a series of experiments performed on patient M.

View Article and Find Full Text PDF

Previous research investigating eye movements when grasping objects with precision grip has shown that we tend to fixate close to the contact position of the index finger on the object. It has been hypothesized that this behavior is related to the fact that the index finger usually describes a more variable trajectory than the thumb and therefore requires a higher amount of visual monitoring. We wished to directly test this prediction by creating a grasping task in which either the index finger or the thumb described a more variable trajectory.

View Article and Find Full Text PDF

Optic ataxia represents a spatial impairment of visually guided reaching following bilateral or unilateral damage to the posterior parietal cortex that is independent of purely motor or visual deficits. Research to date has focused on reaching actions performed with the upper limbs but has neglected to explore whether or not optic ataxia affects the lower limbs, that is, whether it is effector-specific. We asked patient M.

View Article and Find Full Text PDF

The perception of object-directed actions performed by either hands or tools recruits regions in left fronto-parietal cortex. Here, using functional MRI (fMRI), we tested whether the common role of hands and tools in object manipulation is also reflected in the distribution of response patterns to these categories in visual cortex. In two experiments we found that static pictures of hands and tools activated closely overlapping regions in left lateral occipitotemporal cortex (LOTC).

View Article and Find Full Text PDF

Reach-to-grasp actions require coordination of different segments of the upper limbs. Previous studies have examined the neural substrates of arm transport and hand grip components of such actions; however, a third component has been largely neglected: the orientation of the wrist and hand appropriately for the object. Here we used functional magnetic resonance imaging adaptation (fMRA) to investigate human brain areas involved in processing hand orientation during grasping movements.

View Article and Find Full Text PDF

Background: Most of us are poor at faking actions. Kinematic studies have shown that when pretending to pick up imagined objects (pantomimed actions), we move and shape our hands quite differently from when grasping real ones. These differences between real and pantomimed actions have been linked to separate brain pathways specialized for different kinds of visuomotor guidance.

View Article and Find Full Text PDF

Picking up a cup requires transporting the arm to the cup (transport component) and preshaping the hand appropriately to grasp the handle (grip component). Here, we used functional magnetic resonance imaging to examine the human neural substrates of the transport component and its relationship with the grip component. Participants were shown three-dimensional objects placed either at a near location, adjacent to the hand, or at a far location, within reach but not adjacent to the hand.

View Article and Find Full Text PDF

Accumulating evidence points to a map of visual regions encoding specific categories of objects. For example, a region in the human extrastriate visual cortex, the extrastriate body area (EBA), has been implicated in the visual processing of bodies and body parts. Although in the monkey, neurons selective for hands have been reported, in humans it is unclear whether areas selective for individual body parts such as the hand exist.

View Article and Find Full Text PDF

Optic ataxia is defined as a spatial impairment of visually guided reaching, but it is typically accompanied by other visuomotor difficulties, notably a failure to scale the handgrip appropriately while reaching to grasp an object. This impaired grasping might reflect a primary visuomotor deficit, or it might be a secondary effect arising from the spatial uncertainty associated with poor reaching. To distinguish between these possibilities, we used a new paradigm to tease apart the proximal and distal components of prehension movements.

View Article and Find Full Text PDF

Macaque neurophysiology and human neuropsychology results suggest that parietal cortex encodes a unique representation of space within reach of the arm. Here, we used slow event-related functional magnetic resonance imaging (fMRI) to investigate whether human brain areas involved in reaching are more activated by objects within reach versus beyond reach. In experiment 1, graspable objects were placed at three possible locations on a platform: two reachable locations and one beyond reach.

View Article and Find Full Text PDF

A common view is that visual processing within the ventral visual stream is modulated by attention and awareness. We used fMRI adaptation to investigate whether activation in a network of brain regions involved with face recognition--namely the fusiform face area (FFA), occipital face area (OFA) and right superior temporal sulcus (rSTS)--was modulated by physical changes to face stimuli or by observers' awareness of the changes. We sequentially presented two matrices of four faces.

View Article and Find Full Text PDF

Neuroimaging investigations reliably describe a left-lateralized network of areas as underlying the representations of knowledge about familiar tools. Among the critical 'nodes' of the network, an area centered within the left intraparietal sulcus (IPS) is thought to be related to the motoric representations associated with familiar tools and their usage. This area is in the vicinity of an area implicated in the control of object-directed grasping actions: the anterior intraparietal area, AIP.

View Article and Find Full Text PDF

Background: Almost 15 years after its formulation, evidence for the neuro-functional dissociation between a dorsal action stream and a ventral perception stream in the human cerebral cortex is still based largely on neuropsychological case studies. To date, there is no unequivocal evidence for separate visual computations of object features for performance of goal-directed actions versus perceptual tasks in the neurologically intact human brain. We used functional magnetic resonance imaging to test explicitly whether or not brain areas mediating size computation for grasping are distinct from those mediating size computation for perception.

View Article and Find Full Text PDF

In the present study, we aimed to dissociate the neural correlates of two subprocesses involved in the preparatory period in the context of arbitrary, prelearned stimulus-response (S-R) associations, namely, S-R mapping and movement planning (MP). We teased apart these two subprocesses by comparing three tasks in which the complexity of both S-R mapping and MP were independently manipulated: simple reaction time (SRT) task, go/no-go reaction time (GNGRT) task, and choice reaction time (CRT) task. We found that a more complex S-R mapping, which is the common element differentiating CRT and GNGRT from SRT, was associated with higher brain activation in the left superior parietal lobe (SPL).

View Article and Find Full Text PDF