Publications by authors named "Cristian-Andi Nicolae"

Blending poly(3-hydroxybutyrate) (PHB) with other polymers could be a rapid and accessible solution to overcome some of its drawbacks. In this work, PHB was modified with microfibrillated cellulose (MC) and a thermoplastic polyurethane containing biodegradable segments (PU) by two routes, using a masterbatch and by direct mixing. The PU and MC modifiers improved the thermal stability of PHB by up to 13 °C and slightly decreased its melt viscosity and crystallinity, thus improving the melt processability.

View Article and Find Full Text PDF

Poly (3-hydroxybutyrate) (PHB) is a valuable biopolymer that is produced in industrial quantity but is not widely used in applications due to some drawbacks. The addition of cellulose nanofibers (CNF) as a biofiller in PHB/CNF nanocomposites may improve PHB properties and enlarge its application field. In this work, n-octyltriethoxy silane (OTES), a medium-chain-length alkyl silane, was used to surface chemically modify the CNF (CNF_OTES) to enhance their hydrophobicity and improve their compatibility with PHB.

View Article and Find Full Text PDF

: The study explores the potential of various deep eutectic solvents (DESs) to serve as drug delivery systems and pharmaceutical excipients. The research focuses on two primary objectives: evaluating the ability of the selected DES systems to enhance the solubility of two poorly water-soluble model drugs (IBU and MFA), and evaluating their physicochemical properties, including density, viscosity, flow behavior, surface tension, thermal stability, and water dilution effects, to determine their suitability for pharmaceutical applications. : A range of DES systems containing pharmaceutically acceptable constituents was explored, encompassing organic acid-based, sugar- and sugar alcohol-based, and hydrophobic systems, as well as menthol (MNT)-based DES systems with common pharmaceutical excipients.

View Article and Find Full Text PDF

This study focuses on the design, characterization, and optimization of nanostructured lipid carriers (NLCs) loaded with docetaxel for the treatment of skin cancer. Employing a systematic formulation development process guided by Design of Experiments (DoE) principles, key parameters such as particle size, polydispersity index (PDI), zeta potential, and entrapment efficiency were optimized to ensure the stability and drug-loading efficacy of the NLCs. Combined XRD and cryo-TEM analysis were employed for NLC nanostructure evaluation, confirming the formation of well-defined nanostructures.

View Article and Find Full Text PDF

One solution to comply with the strict regulations of the European Commission and reduce the environmental footprint of composites is the use of composite materials based on bio-polymers and fillers from natural resources. The aim of our work was to obtain and analyze the properties of bio-polymer nanocomposites based on bio-PA (PA) and feather keratin-halloysite nanohybrid. Keratin (KC) was mixed with halloysite (H) as such or with the treated surface under dynamic conditions, resulting in two nanohybrids: KCHM and KCHE.

View Article and Find Full Text PDF
Article Synopsis
  • Selenium nanoparticles (SeNPs), biosynthesized from Kombucha fermentation, were combined with chitosan and bacterial nanocellulose (BNC) to create a hydrogel formulation (SeBNCSFa) aimed at improving oral implant integration.
  • The study examined the hydrogel's biochemical properties, cell viability of gingival fibroblasts, antioxidant activity, and inflammatory response using enzyme-linked immunosorbent assays (ELISA).
  • Results indicated the hydrogel possessed high cytocompatibility, along with enhanced antioxidant, anti-inflammatory, and antimicrobial properties, suggesting its potential use in medical applications.
View Article and Find Full Text PDF

The therapeutic effects of curcumin and its derivatives, based on research in recent years, are limited by their low bioavailability. To improve bioavailability and develop the medical field of application, different delivery systems have been developed that are adapted to certain environments or the proposed target type. This study presents some half-curcuminoids prepared by the condensation of acetylacetone with 4-hydroxybenzaldehyde (C1), 4-hydroxy-3-methoxybenzaldehyde (C2), 4-acetamidobenzaldehyde (C3), or 4-diethylaminobenzaldehyde (C4), at microwaves as a simple, solvent-free, and eco-friendly method.

View Article and Find Full Text PDF

This work aims to evaluate the potential use of natural wastes (in particular, clam shells) to synthesize one of the most well-known and versatile materials from the phosphate mineral group, hydroxyapatite (HAP). The obtained material was characterized in terms of morphology and composition using several analytical methods (scanning electron microscopy-SEM, X-ray diffraction-XRD, X-ray fluorescence-XRF, Fourier transform infrared spectroscopy-FTIR, thermal analysis-TGA, and evaluation of the porosity and specific surface characteristics by the Brunauer-Emmett-Teller-BET method) in order to confirm the successful synthesis of the material and to evaluate the presence of potential secondary phases. The developed material was further doped with iron oxide (HAP-Fe) using a microwave-assisted method, and both materials were evaluated in terms of photocatalytic activity determined by the photodecomposition of methylene blue (MB) which served as a contaminant model.

View Article and Find Full Text PDF

A cost-effective solution to the problems that the automotive industry is facing nowadays regarding regulations on emissions and fuel efficiency is to achieve weight reduction of automobile parts. Glass fiber-reinforced polymers are regularly used to manufacture various components, and some parts may also contain thermoplastic elastomers for toughness improvement. This work aimed to investigate the effect of styrene-(ethylene-co-butylene)-styrene triblock copolymer (E) and treated fly ash (C) on the morphological, thermal, and mechanical properties of long glass fiber (G)-reinforced polypropylene (PP).

View Article and Find Full Text PDF

In the textile, medical, and food industries, many of the applications have targeted the use of textile fabrics with antimicrobial properties. Obtaining eco-friendly coatings is of wide interest, especially for applications related to wound dressing or to food packaging. In order to obtain coatings with antimicrobial properties through environmentally friendly methods, a series of experiments were carried out on the use of natural polymers loaded with silver nanoparticles.

View Article and Find Full Text PDF

Finding efficient and environmental-friendly methods to produce and chemically modify cellulose nanofibers (CNFs) remains a challenge. In this study, lactic acid (LA) treatment followed by microfluidization was employed for the isolation and functionalization of CNFs. Small amounts of HCl (0.

View Article and Find Full Text PDF

The medical sector is one of the biggest consumers of single-use materials, and while the insurance of sterile media is non-negotiable, the environmental aspect is a chronic problem. Nanocellulose (NC) is one of the safest and most promising materials that can be used in medical applications due to its valuable properties like biocompatibility and biodegradability, along with its good mechanical properties and high water uptake capacity. However, NC has no bactericidal activity, which is a critical need for the effective prevention of infections in chronic diabetic wound dressing applications.

View Article and Find Full Text PDF

An endotracheal tube (ETT) is a greatly appreciated medical device at the global level with widespread application in the treatment of respiratory diseases, such as bronchitis and asthma, and in general anesthesia, to provide narcotic gases. Since an important quantitative request for cuffed ETTs was recorded during the COVID-19 pandemic, concerns about infection have risen. The plasticized polyvinyl chloride (PVC) material used to manufacture ETTs favors the attachment of microorganisms from the human biological environment and the migration of plasticizer from the polymer that feeds the microorganisms and promotes the growth of biofilms.

View Article and Find Full Text PDF

The main aim of this study is to find relevant analytic fingerprints for plants' structural characterization using spectroscopic techniques and thermogravimetric analyses (TGAs) as alternative methods, particularized on cabbage treated with selenium-baker's yeast vinasse formulation (Se-VF) included in a foliar fertilizer formula. The hypothesis investigated is that Se-VF will induce significant structural changes compared with the control, analytically confirming the biofortification of selenium-enriched cabbage as a nutritive vegetable, and particularly the plant biostimulant effects of the applied Se-VF formulation on cabbage grown in the field. The TGA evidenced a structural transformation of the molecular building blocks in the treated cabbage leaves.

View Article and Find Full Text PDF

This paper describes the preparation of new PEG-silica-MWCNTs composites as shape-stabilized phase change materials (ssPCMs) for application in latent heat storage. An innovative method was employed to obtain the new organic-inorganic hybrid materials, in which both a part of the PEG chains, used as the phase change material, and a part of the hydroxyl functionalized multiwall carbon nanotubes (MWCNTs-OH), used as thermo-conductive fillers, were covalently connected by newly formed urethane bonds to the in-situ-generated silica matrix. The study's main aim was to investigate the optimal amount of PEG that can be added to the fixed sol-gel reaction mixture so that no leakage of PEG occurs after repeated heating-cooling cycles.

View Article and Find Full Text PDF

Nanocellulose (NC) is a valuable material in tissue engineering, wound dressing, and drug delivery, but its lack of antimicrobial activity is a major drawback for these applications. In this work, basil ethanolic extract (BE) and basil seed mucilage (BSM) were used to endow nanocellulose with antibacterial activity. NC/BE and NC/BE/BSM sponges were obtained from nanocellulose suspensions and different amounts of BE and BSM after freeze-drying.

View Article and Find Full Text PDF

Poly(3-hydroxybutyrate) (PHB) was blended with medium-chain-length PHAs (mcl-PHAs) for improving its flexibility while nanocellulose (NC) was added as a reinforcing agent. Even and odd-chain-length PHAs, having as main component poly(3-hydroxyoctanoate) (PHO) or poly(3-hydroxynonanoate) (PHN) were synthesized and served as PHB modifiers. The effects of PHO and PHN on the morphology, thermal, mechanical and biodegradation behaviors of PHB were different, especially in the presence of NC.

View Article and Find Full Text PDF

There is an ever-growing interest in recovering and recycling waste materials due to their hazardous nature to the environment and human health. Recently, especially since the beginning of the COVID-19 pandemic, disposable medical face masks have been a major source of pollution, hence the rise in studies being conducted on how to recover and recycle this waste. At the same time, fly ash, an aluminosilicate waste, is being repurposed in various studies.

View Article and Find Full Text PDF

Textile materials with fluorescent, repellent, or antimicrobial properties are increasingly used in common applications. Obtaining multi-functional coatings is of wide interest, especially for applications related to signaling or to the medical field. In order to increase the performance (color properties, fluorescence lifetime, self-cleaning or antimicrobial properties) of textile materials with special uses, a series of research was carried out regarding the modification of surfaces with nanosols.

View Article and Find Full Text PDF

The objective of this study was to investigate the effects of enzymatic hydrolysis using α-amylase from on the mechanical properties of starch-based films. The process parameters of enzymatic hydrolysis and the degree of hydrolysis (DH) were optimized using a Box-Behnken design (BBD) and response surface methodology (RSM). The mechanical properties of the resulting hydrolyzed corn starch films (tensile strain at break, tensile stress at break, and Young's modulus) were evaluated.

View Article and Find Full Text PDF

The growing interest in materials derived from biomass has generated a multitude of solutions for the development of new sustainable materials with low environmental impact. We report here, for the first time, a strategy to obtain bio-based nanocomposites from epoxidized linseed oil (ELO), itaconic acid (IA), and surface-treated nanofibrillated cellulose (NC). The effect of nanofibrillated cellulose functionalized with silane (NC/S) and then grafted with methacrylic acid (NC/SM) on the properties of the resulted bio-based epoxy systems was thoroughly investigated.

View Article and Find Full Text PDF

The influence of storage conditions on the mechanical recycling of pre-consumer waste (PRE-CW) from the manufacture of multilayer packaging films starting from starch compounds using a renewable-based polymer with PCL and PBAT, which are biodegradable conventional-based polyesters, was studied. It was found that, unlike materials based on conventional-origin polymers that accumulate in the environment for hundreds of years, the studied compounds degraded, even in the solid state, duringstorage in unventilated spaces and during the rainy hot summers with alternatingheat and rain. The degradation of the mechanically recycled compounds obtained from PRE-CW stored in such conditions was highlighted by the comparative analysis with the primary compounds, which proved the following: specific FTIR spectra changes; 2-3-times higher melt fluidity than for primary compounds; melting in successive processes over the entire positive temperatures range, up to 115 °C, such as in cases of compositional de-mixing of incompatible blends, faced to a single melting endotherm with a maximum at around 120 °C for the primar thermal degradation with the movement of the main destruction stages towards higher temperatures; a high quantity residue at 750 °C in air; dispersed mechanical resistance properties y compounds; crystallization at temperatures 10 °C-15 °C higher.

View Article and Find Full Text PDF

Natural fibers-reinforced polymer composites have progressed rapidly due to their undeniable advantages. Most of the commercial polypropylene (PP)-based materials are characterized by either high impact toughness or high stiffness, while the manufacture of PP composites with both good toughness and stiffness is challenging at present. In this work, poly[styrene--(ethylene-co-butylene)--styrene] (SEBS) and poly(styrene--butadiene--styrene) (SBS) copolymers were used in different amounts as modifiers in PP/hemp fibers (HF) composites, with the aim to use them for electrical vehicle parts.

View Article and Find Full Text PDF

In this work, an economically feasible procedure was employed to produce poly (3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV)-based foams. Thermally expandable microspheres (TESs) were used as a blowing agent, while bacterial cellulose (BC) nanofibers served both as a reinforcing agent and as a means of improving biocompatibility. PHBV was plasticized with acetyltributylcitrate to reduce the processing temperature and ensure the maximum efficiency of the TES agent.

View Article and Find Full Text PDF

In this work, cellulose nanofibers (CNF) were surface treated by plasma and grafted with poly(ethylene glycol)methyl ether methacrylate (PEGMMA) for increasing mechanical strength and hydrophobicity. The surface characteristics of the sponges were studied by scanning electron microscopy, micro-computed tomography, and Fourier transform infrared spectroscopy, which demonstrated successful surface modification. Plasma treatment applied to CNF suspension led to advanced defibrillation, and the resulting sponges (CNFpl) exhibited smaller wall thickness than CNF.

View Article and Find Full Text PDF