Multiple studies indicate that iron chelators enhance their anti-cancer properties by inducing NDRG1, a known tumor and metastasis suppressor. However, the exact role of NDRG1 remains controversial, as newer studies have shown that NDRG1 can also act as an oncogene. Our group recently introduced mitochondrially targeted iron chelators deferoxamine (mitoDFO) and deferasirox (mitoDFX) as effective anti-cancer agents.
View Article and Find Full Text PDFPancreatic cancer is a severe malignancy with increasing incidence and high mortality due to late diagnosis and low sensitivity to treatments. Search for the most appropriate drugs and therapeutic regimens is the most promising way to improve the treatment outcomes of the patients. This study aimed to compare (1) efficacy and (2) antitumor effects of conventional paclitaxel and the newly synthesized second (SB-T-1216) and third (SB-T-121605 and SB-T-121606) generation taxanes in wild type BxPC-3 and more aggressive G12V mutated Paca-44 pancreatic cancer cell line models.
View Article and Find Full Text PDFTaxanes are widely used in the treatment of ovarian carcinomas. One of the main problems with conventional taxanes is the risk of development of multidrug resistance. New-generation synthetic experimental taxoids (Stony Brook Taxanes; SB-T) have shown promising effects against various resistant tumor models.
View Article and Find Full Text PDFDeferoxamine (DFO) represents a widely used iron chelator for the treatment of iron overload. Here we describe the use of mitochondrially targeted deferoxamine (mitoDFO) as a novel approach to preferentially target cancer cells. The agent showed marked cytostatic, cytotoxic, and migrastatic properties , and it significantly suppressed tumor growth and metastasis .
View Article and Find Full Text PDFIntroduction: Colorectal cancer (CRC) is a critical health issue worldwide. The high rate of liver and lung metastasis associated with CRC creates a significant barrier to effective and efficient therapy. Tumour cells, including CRC cells, have metabolic alterations, such as high levels of glycolytic activity, increased cell proliferation and invasiveness, and chemo- and radio-resistance.
View Article and Find Full Text PDFThe mitochondrion has emerged as a promising therapeutic target for novel cancer treatments because of its essential role in tumorigenesis and resistance to chemotherapy. Previously, we described a natural compound, 10-((2,5-dihydroxybenzoyl)oxy)decyl) triphenylphosphonium bromide (GA-TPPC), with a hydroquinone scaffold that selectively targets the mitochondria of breast cancer (BC) cells by binding to the triphenylphosphonium group as a chemical chaperone; however, the mechanism of action remains unclear. In this work, we showed that GA-TPPC causes time-dependent complex inhibition of the mitochondrial bioenergetics of BC cells, characterized by (1) an initial phase of mitochondrial uptake with an uncoupling effect of oxidative phosphorylation, as previously reported, (2) inhibition of Complex I-dependent respiration, and (3) a late phase of mitochondrial accumulation with inhibition of α-ketoglutarate dehydrogenase complex (αKGDHC) activity.
View Article and Find Full Text PDFTamoxifen resistance remains a clinical obstacle in the treatment of hormone sensitive breast cancer. It has been reported that tamoxifen is able to target respiratory complex I within mitochondria. Therefore, we established two tamoxifen-resistant cell lines, MCF7 Tam5R and T47D Tam5R resistant to 5 μM tamoxifen and investigated whether tamoxifen-resistant cells exhibit mitochondrial changes which could help them survive the treatment.
View Article and Find Full Text PDFCancer cells without mitochondrial DNA (mtDNA) do not form tumors unless they reconstitute oxidative phosphorylation (OXPHOS) by mitochondria acquired from host stroma. To understand why functional respiration is crucial for tumorigenesis, we used time-resolved analysis of tumor formation by mtDNA-depleted cells and genetic manipulations of OXPHOS. We show that pyrimidine biosynthesis dependent on respiration-linked dihydroorotate dehydrogenase (DHODH) is required to overcome cell-cycle arrest, while mitochondrial ATP generation is dispensable for tumorigenesis.
View Article and Find Full Text PDFWe previously demonstrated that alkyl gallates coupled to triphenylphosphine have a selective and efficient antiproliferative effect by inducing mitochondrial uncoupling in vitro due to the increased mitochondrial transmembrane potential of tumor cells. Therefore, in this work, the in vivo antitumor activities of alkyl gallate triphenylphosphonium derivatives (TPPC, TPPC and TPPC) were evaluated in a syngeneic murine model of breast cancer. We found that TPPC increased the cytosolic ADP/ATP ratio and significantly increased the AMP levels in a concentration-dependent manner in TA3/Ha murine mammary adenocarcinoma cells.
View Article and Find Full Text PDFMitochondrion is an accepted molecular target in cancer treatment since it exhibits a higher transmembrane potential in cancer cells, making it susceptible to be targeted by lipophilic-delocalized cations of triphenylphosphonium (TPP(+)). Thus, we evaluated five TPP(+)-linked decyl polyhydroxybenzoates as potential cytotoxic agents in several human breast cancer cell lines that differ in estrogen receptor and HER2/neu expression, and in metabolic profile. Results showed that all cell lines tested were sensitive to the cytotoxic action of these compounds.
View Article and Find Full Text PDFMitochondria are a major subcellular site of superoxide (O2(-)) formation. Conditions leading to an uncontrolled production, accumulation and/or conversion of O2(-) into hydrogen peroxide result in an increment in the intramitochondrial oxidative tone which, ultimately leads to the loss of cell viability. Recently, we reported on the ability of a series of Cu(II)-disulfide complexes to act simultaneously as SOD- and catalase-like molecules.
View Article and Find Full Text PDFPolyphenols, ubiquitously present in fruits and vegetables, have been traditionally viewed as antioxidant molecules. Such contention emerged, mainly from their well established in vitro ability to scavenge free radicals and other reactive oxygen species (ROS). During the last decade, however, increasing evidence has emerged supporting the ability of certain polyphenols to also exert numerous ROS-scavenging independent actions.
View Article and Find Full Text PDFSuperoxide is a potentially toxic by-product of cellular metabolism. We have addressed here the in vitro ability of complexes formed between copper(II) ions and various biologically-occurring disulfides (RSSR: oxidized glutathione, cystine, homocystine and α-lipoic acid) to react with superoxide. The studied complexes were found to react with superoxide (generated by a xanthine/xanthine oxidase system) at rate constants (kCu(II)-RSSR) close to 10(6)M(-1)s(-1), which are three orders of magnitude lower than that reported for superoxide dismutase (SOD) but comparable to that of several other copper-containing complexes reported as SOD mimetics.
View Article and Find Full Text PDFMitochondrial dysfunction plays a major role in the development of oxidative stress and cytotoxicity induced by non-steroidal anti-inflammatory drugs (NSAIDs). A major objective of the present study was to investigate whether in vitro the NSAIDs, aspirin, indomethacin, diclofenac, piroxicam and ibuprofen, which feature different chemical structures, are able to inhibit mitochondrial complex I. All NSAIDs were effective inhibitors when added both, directly to mitochondria isolated from rat duodenum epithelium (50 μM) or to Caco-2 cells (250 μM).
View Article and Find Full Text PDFThis paper reports the first database on antioxidants contained in fruits produced and consumed within the south Andes region of South America. The database ( www.portalantioxidantes.
View Article and Find Full Text PDFThe physiologically occurring copper-glutathione complex, [Cu(I)-[GSH](2)], has the ability to react continually with oxygen, generating superoxide anions (O(2) (∙-)). We addressed here the effects that superoxide removal has on the redox state of Cu(I) and GSH present in such complex and assessed the formation of Cu(II)-GSSG as a final oxidation product. In addition, we investigated the potential of a source of O(2) (∙-) external to the Cu(I)-[GSH](2) complex to prevent its oxidation.
View Article and Find Full Text PDF