Publications by authors named "Cristian Salgado-Luarte"

Plant resistance includes mechanical and chemical defenses that reduce herbivory, whereas plant tolerance reduces the fitness impact of herbivory. Because defenses are costly and investing in both resistance and tolerance may be superfluous, trade-offs among them are expected. In forest ecosystems, the mechanical strengthening of leaves is linked both to shade adaptation and antiherbivore defenses, but it also compromises resource uptake, therefore limiting regrowth following damage, suggesting a trade-off between mechanical defenses and tolerance.

View Article and Find Full Text PDF

Predicting plastic responses is crucial to assess plant species potential to adapt to climate change, but little is known about which factors drive the biogeographical patterns of phenotypic plasticity in plants. Theory predicts that climatic variability would select for increased phenotypic plasticity, whereas evidence indicates that stressful conditions can limit phenotypic plasticity. Using a meta-analytic, phylogeny-corrected approach to global data on plant phenotypic plasticity, we tested whether latitude, climate, climatic variability and/or stressful conditions are predictors of plastic responses at a biogeographical scale.

View Article and Find Full Text PDF
Article Synopsis
  • Scientists studied how less rainfall affects plant communities in the Atacama Desert, focusing on "Lomas" plants that rely on fog for survival.
  • They found that when there was less rain, fewer plant species were present, but the variety of functions those plants performed stayed the same.
  • This suggests that even if some plants disappear, the needed abilities of the plant community can still be maintained if similar plants are around to fill in the gaps.*
View Article and Find Full Text PDF

Rapid local adaptation frequently occurs during the spread of invading species. It remains unclear, however, how consistent, and therefore potentially predictable, such patterns of local adaptation are. One approach to this question is to measure patterns of local differentiation in functional traits and plasticity levels in invasive species in multiple regions.

View Article and Find Full Text PDF

The resource availability hypothesis (RAH), the most successful theory explaining plant defence patterns, predicts that defence investment is related to the relative growth rate (RGR) of plant species, which is associated with habitat quality. Thus, fast-growing species should show lower resistance than slow-growing species, which would lead fast growers to sustain higher herbivory rates, but the fitness consequences of herbivory would be greater for slow growers. The latter is often assumed but rarely tested.

View Article and Find Full Text PDF

Background And Aims: Disturbance often drives plant invasion and may modify community assembly. However, little is known about how these modifications of community patterns occur in terms of taxonomic, functional and phylogenetic structure. This study evaluated in an arid shrubland the influence of disturbance by an endemic rodent on community functional divergence and phylogenetic structure as well as on plant invasion.

View Article and Find Full Text PDF

The climbing habit is a key innovation in plants: climbing taxa have higher species richness than nonclimbing sister groups. We evaluated the hypothesis that climbing plant species show greater among-population genetic differentiation than nonclimber species. We compared the among-population genetic distance in woody climbers (eight species, 30 populations) and trees (seven species, 29 populations) coexisting in nine communities in a temperate rainforest.

View Article and Find Full Text PDF

The climbing habit is an evolutionary key innovation in plants because it is associated with enhanced clade diversification. We tested whether patterns of species divergence and variation of three ecophysiological traits that are fundamental for plant adaptation to light environments (maximum photosynthetic rate [A(max)], dark respiration rate [R(d)], and specific leaf area [SLA]) are consistent with this key innovation. Using data reported from four tropical forests and three temperate forests, we compared phylogenetic distance among species as well as the evolutionary rate, phylogenetic distance and phylogenetic signal of those traits in lianas and trees.

View Article and Find Full Text PDF

Is physiological performance a suitable proxy of fitness in plants? Although, several studies have been conducted to measure some fitness-related traits and physiological performance, direct assessments are seldom found in the literature. Here, we assessed the physiology-fitness relationship using second-generation individuals of the invasive plant species Taraxacum officinale from 17 localities distributed in five continents. Specifically, we tested if i) the maximum quantum yield is a good predictor for seed-output ii) whether this physiology-fitness relationship can be modified by environmental heterogeneity, and iii) if this relationship has an adaptive consequence for T.

View Article and Find Full Text PDF

There is limited evidence regarding the adaptive value of plant functional traits in contrasting light environments. It has been suggested that changes in these traits in response to light availability can increase herbivore susceptibility. We tested the adaptive value of plant functional traits linked with carbon gain in contrasting light environments and also evaluated whether herbivores can modify selection on these traits in each light environment.

View Article and Find Full Text PDF

Differential herbivory and/or differential plant resistance or tolerance in sun and shade environments may influence plant distribution along the light gradient. Embothrium coccineum is one of the few light-demanding tree species in the temperate rainforest of southern South America, and seedlings are frequently attacked by insects and snails. Herbivory may contribute to the exclusion of E.

View Article and Find Full Text PDF