Introduction: In the modern competitive landscape of football, clubs are increasingly leveraging data-driven decision-making to strengthen their commercial positions, particularly against rival clubs. The strategic allocation of resources to attract and retain profitable fans who exhibit long-term loyalty is crucial for advancing a club's marketing efforts. While the Recency, Frequency, and Monetary (RFM) customer segmentation technique has seen widespread application in various industries for predicting customer behavior, its adoption within the football industry remains underexplored.
View Article and Find Full Text PDFJ Neurosci Methods
January 2021
Background: Closed-loop phase-locked stimulation experiments are rare due to the unavailability of user-friendly algorithms and devices. Our goal is to provide an algorithm for the detection of oscillatory activity in local field potentials (LFPs) and phase prediction, which is user-friendly and robust to non-stationarities in LFPs of behaving animals.
New Method: We propose an algorithm that only requires specification of the frequency range within which oscillatory episodes are tracked.