Publications by authors named "Cristian Riella"

Heterozygosity for inverted formin-2 (INF2) mutations causes focal segmental glomerulosclerosis (FSGS) with or without Charcot-Marie-Tooth disease. A key question is whether the disease is caused by gain-of-function effects on INF2 or loss of function (haploinsufficiency). Despite established roles in multiple cellular processes, neither INF2 knockout mice nor mice with a disease-associated point mutation display an evident kidney or neurologic phenotype.

View Article and Find Full Text PDF

Detecting genetic variants enables risk factor identification, disease screening, and initiation of preventative therapeutics. However, current methods, relying on hybridization or sequencing, are unsuitable for point-of-care settings. In contrast, CRISPR-based-diagnostics offer high sensitivity and specificity for point-of-care applications.

View Article and Find Full Text PDF

Introduction: Advances in the field of genetic testing have spurred its use in transplantation. Potential benefits of genetic testing in transplant nephrology include diagnosis, treatment, risk stratification of recurrent disease, and risk stratification in potential donors. However, it is unclear how to best apply genetic testing in this population to maximize its yield.

View Article and Find Full Text PDF

Inverted formin-2 (INF2) gene mutations are among the most common causes of genetic focal segmental glomerulosclerosis (FSGS) with or without Charcot-Marie-Tooth (CMT) disease. Recent studies suggest that INF2, through its effects on actin and microtubule arrangement, can regulate processes including vesicle trafficking, cell adhesion, mitochondrial calcium uptake, mitochondrial fission, and T-cell polarization. Despite roles for INF2 in multiple cellular processes, neither the human pathogenic R218Q INF2 point mutation nor the INF2 knock-out allele is sufficient to cause disease in mice.

View Article and Find Full Text PDF

Two heterozygous missense variants (G1 and G2) of Apolipoprotein L1 (APOL1) found in individuals of recent African ancestry can attenuate the severity of infection by some forms of Trypanosoma brucei. However, these two variants within a broader African haplotype also increase the risk of kidney disease in Americans of African descent. Although overexpression of either variant G1 or G2 causes multiple pathogenic changes in cultured cells and transgenic mouse models, the mechanism(s) promoting kidney disease remain unclear.

View Article and Find Full Text PDF

risk variants are associated with increased risk of kidney disease in patients of African ancestry, but not all individuals with the high-risk genotype develop kidney disease. As APOL1 gene expression correlates closely with the degree of kidney cell injury in both cell and animal models, the mechanisms regulating APOL1 expression may be critical determinants of risk allele penetrance. The APOL1 messenger RNA includes Alu elements at the 3' untranslated region that can form a double-stranded RNA structure (Alu-dsRNA) susceptible to posttranscriptional adenosine deaminase acting on RNA (ADAR)-mediated adenosine-to-inosine (A-to-I) editing, potentially impacting gene expression.

View Article and Find Full Text PDF

Background: Two variants in the gene encoding apolipoprotein L1 (APOL1) that are highly associated with African ancestry are major contributors to the large racial disparity in rates of human kidney disease. We previously demonstrated that recruitment of APOL1 risk variants G1 and G2 from the endoplasmic reticulum to lipid droplets leads to reduced APOL1-mediated cytotoxicity in human podocytes.

Methods: We used CRISPR-Cas9 gene editing of induced pluripotent stem cells to develop human-derived APOL1 and APOL1 kidney organoids on an isogenic background, and performed bulk RNA sequencing of organoids before and after treatment with IFN-.

View Article and Find Full Text PDF

Kidney disease affects 10% of the world population and is associated with increased mortality. Steroid-resistant nephrotic syndrome (SRNS) is a leading cause of end-stage kidney disease in children, often failing standard immunosuppression. Here, we report the results of a prospective study to investigate the immunological impact and safety of a gluten-free and dairy-free (GF/DF) diet in children with SRNS.

View Article and Find Full Text PDF

Introduction: Coding variants in apolipoprotein L-1 (APOL1) are associated with an increased risk of end-stage kidney disease (ESRD) in African American individuals under a recessive model of inheritance. The effect of the APOL1 risk alleles on kidney disease has been observed in studies in African American and African populations. Despite the 130 million individuals of recent African ancestry in South America, the impact of APOL1 has not been explored.

View Article and Find Full Text PDF

Two coding variants in the apolipoprotein L1 (APOL1) gene (termed G1 and G2) are strongly associated with increased risk of nondiabetic kidney disease in people of recent African ancestry. The mechanisms by which the risk variants cause kidney damage, although not well-understood, are believed to involve injury to glomerular podocytes. The intracellular localization and function of APOL1 in podocytes remain unclear, with recent studies suggesting possible roles in the endoplasmic reticulum (ER), mitochondria, endosomes, lysosomes, and autophagosomes.

View Article and Find Full Text PDF

There are striking differences in chronic kidney disease between Caucasians and African descendants. It was widely accepted that this occurred due to socioeconomic factors, but recent studies show that apolipoprotein L-1 (APOL1) gene variants are strongly associated with focal segmental glomerulosclerosis, HIV-associated nephropathy, hypertensive nephrosclerosis, and lupus nephritis in the African American population. These variants made their way to South America trough intercontinental slave traffic and conferred an evolutionary advantage to the carries by protecting against forms of trypanosomiasis, but at the expense of an increased risk of kidney disease.

View Article and Find Full Text PDF

The spectrum of polycystic kidney disease (PKD) comprises a family of inherited syndromes defined by renal cyst formation and growth, progressive renal function loss and variable extrarenal manifestations. The most common form, autosomal-dominant PKD is caused by mutations in one of two genes, PKD1 or PKD2. Recent developments in genomic and proteomic medicine have resulted in the discovery of novel genes implicated in the wide variety of less frequent, recessive PKD syndromes.

View Article and Find Full Text PDF

Background: Markers of inflammation are linked to malnutrition and confer an increased mortality risk in hemodialysis patients. Ultrapure dialysate might have a beneficial effect on markers of inflammation. We conducted a meta-analysis that examined the effect of ultrapure versus standard dialysate on markers of inflammation, oxidative stress, nutrition and anemia parameters.

View Article and Find Full Text PDF