Publications by authors named "Cristian Ravariu"

Neurotransmitters are an important category of substances used inside the nervous system, whose detection with biosensors has been seriously addressed in the last decades. Dopamine, a neurotransmitter from the catecholamine family, was recently discovered to have implications for cardiac arrest or muscle contractions. In addition to having many other neuro-psychiatric implications, dopamine can be detected in blood, urine, and sweat.

View Article and Find Full Text PDF

The latest novelties in electronic biosensors indicate an increased interest in the compatibilization between Field Effect Transistors (FETs) and bioreceptors, either enzymes, antibodies or cells, for the purpose of detecting the multiple analytes [...

View Article and Find Full Text PDF

Microstrip patch antennas have been used in many applications since their appearance. Despite their great promise, their narrow bandwidth and the loss at high-frequency bands have limited their usage in medical applications. This work proposes a developed low-cost microstrip patch antenna suitable for microwave imaging (MWI) applications within the wideband frequency range.

View Article and Find Full Text PDF

Software tools that are able to simulate the functionality or interactions of an enzyme biosensor with Metal Oxide Semiconductor (MOS), or any Field Effect Transistor (FET) as transducer, represent a gap in the market. Bio-devices, or Enzyme-FET, cannot be simulated by Atlas or equivalent software. This paper resolves this issue for the enzymatic block coupled with FETs' role within biosensors.

View Article and Find Full Text PDF

The biosensors that work with field effect transistors as transducers and enzymes as bio-receptors are called ENFET devices. In the actual paper, a traditional MOS-FET transistor is cointegrated with a glucose oxidase enzyme, offering a glucose biosensor. The manufacturing process of the proposed ENFET is optimized in the second iteration.

View Article and Find Full Text PDF

The modeling of biosensors is useful in the design stage. The main device simulator, like Silvaco, has poor software resources for bio-receptors simulations. The modeling is challenging due to the high complexity of the living matter.

View Article and Find Full Text PDF

A disadvantage of the use of pentacene and typical organic materials in electronics is that their precursors are toxic for manufacturers and the environment. To the best of our knowledge, this is the first report of an n-type non-toxic semiconductor for organic transistors that uses sulpho-salicylic acid-a stable, electron-donating compound with reduced toxicity-grafted on a ferrite core-shell and a green synthesis method. The micro-physical characterization indicated a good dispersion stability and homogeneity of the obtained nanofilms using the dip-coating technique.

View Article and Find Full Text PDF

Despite the huge number of previous studies of vacuum devices, nanoscale technologies open new paradigms. Vacuum nanodevices bring multiple advantages, such as air instead of a vacuum for the nanometric gap, strong non-linear characteristics, and a metal oxide semiconductor co-integration facility. This paper presents the manufacturing process and measured characteristics of a nano-device that uses a sub-36 nm gap between two Cr/Au nano-wires.

View Article and Find Full Text PDF

In this paper, we use the laser biophotometry for in vivo investigations, searching the most sensitive interactions of the near-infrared spectrum with different tissues. The experimental methods are based on the average reflection coefficient (ARC) measurements. For healthy persons, ARC is the average of five values provided by the biophotometer.

View Article and Find Full Text PDF