The global promotion of decarbonisation through the circular solutions and (re)use of bio-based resources (BBR), waste streams, notably from the agricultural, forest and municipal sectors has steadily increased in recent decades. Among the transformative solutions offered by BBR, biosolids (BS), biochars (BC), and bioashes (BA) specifically attract scientific attention due to their highly complex organo-mineral matrices, which present significant potential for recovery in the agro-/forest-ecosystems. These materials enhance various soil (i) chemical (pH, macro/micro nutrient concentrations, organic matter content), (ii) physical (porosity, water-air relations, compaction) or (iii) microbial (diversity, activity) properties.
View Article and Find Full Text PDFThe hard-shelled seed industry plays an important role in the global agricultural economy. In fact, only considering hazelnut and walnut, the global nut supply is over 5.6 tons.
View Article and Find Full Text PDFTo determine the effects of pre-harvest calcium (Ca), magnesium (Mg) and potassium (K) spraying on the antioxidant activity and capacity of hazelnut ( L.) shells, as an approach to sustain the utilization of the main residue derived from this industry, four commercial hazelnut (Tonda di Giffoni) orchards located in Southern Chile (Cunco, Gorbea, Perquenco and Radal), during the 2018/19 season were sprayed three times with five combinations of Ca (300 and 600 mg L), Mg (300 and 600 mg L) and K (300 and 600 mg L). Yield components were determined in harvested whole nuts, whereas Ca, Mg and K concentrations, as well as total phenolic compounds, free radical scavenging antioxidant activity, and oxygen radical absorbance capacity, were determined in shells.
View Article and Find Full Text PDFSalinization of soils and freshwater resources by natural processes and/or human activities has become an increasing issue that affects environmental services and socioeconomic relations. In addition, salinization jeopardizes agroecosystems, inducing salt stress in most cultivated plants (nutrient deficiency, pH and oxidative stress, biomass reduction), and directly affects the quality and quantity of food production. Depending on the type of salt/stress (alkaline or pH-neutral), specific approaches and solutions should be applied to ameliorate the situation on-site.
View Article and Find Full Text PDFTo test an assumption that organic soil can ameliorate nutritional disorders associated with metal and salinity stresses, we exposed salt-sensitive strawberry and lettuce to four salinity (0-60 mM NaCl) and three contamination (0.3-5 mg Cd/kg) rates in peat (pH = 5.5).
View Article and Find Full Text PDFBoron (B) and zinc (Zn) are essential micronutrients of plant nutrition programs in orchards for securing the crop quality and yield. Although orchard supplementation with B and Zn is a common practice to overcome deficiencies or maintain their optimal levels, the efficiency of combined B and Zn spraying in relation to European hazelnut ( L.) phenological stage has not been investigated so far.
View Article and Find Full Text PDFThis study was carried out to evaluate the effects of foliar sprays containing boron (B) nano-fertilizer (NF) on the growth and physiology of lettuce (Lactuca sativa) and zucchini (Cucurbita pepo). Plants were grown under greenhouse conditions for 60 days on a modified Hoagland solution with the presence and absence of boron (+B or -B). A synthesized B-NF foliar spray and a commercial B foliar fertilizer (Bortrac™ 150, BT) was applied at a concentration of 30 mg B L at 10-d intervals throughout the experiment.
View Article and Find Full Text PDFBackground: New evidence has shown that arbuscular mycorrhizal (AM) fungi can contribute to the aluminum (Al ) tolerance of host plants growing in acidic soils with phytotoxic levels of Al . The aim of this study was to investigate the role of AM fungi isolated from naturally occurring Al acidic soils in conferring host tolerance to Al toxicity in three wheat cultivars differing in Al sensitivity. The experiment was conducted in a soilless substrate (vermiculite/perlite, 2:1 v/v) using two Al -tolerant wheat genotypes and one Al -sensitive wheat genotype.
View Article and Find Full Text PDFThe biogeochemistry of soil organic matter (SOM), as a highly complex and dynamic soil property, is of vital importance for the health and ecological functioning of ecosystems, including managed and natural ones. Dominantly composed of carbon (C), SOM functions in global C cycling, including C sequestration and emission (e.g.
View Article and Find Full Text PDF