Publications by authors named "Cristian M Piqueras"

This work investigated the synthesis and characterization of alginate/starch porous materials and their application as copper ions adsorbents from aqueous media. Initially, pregel aqueous solutions with different biopolymer concentrations (1, 3, and 5% w/w) and alginate contents (25, 50, and 75% w/w) were prepared. Hydrogel formation was performed by internal and external gelation methods.

View Article and Find Full Text PDF

Here, we build and characterize a single-stage gas-gun microparticle accelerator, where a pressurized gas expands and launches particles on a target. The microparticles in the range of 60-250 μm are accelerated by the expansion of pressurized nitrogen. By using a high-speed camera, we study how the velocity distribution of accelerated particles is modified by particle size, pressure in the gas reservoir, valve's opening time, and diaphragm's thickness and composition.

View Article and Find Full Text PDF

The synergistic effect of microencapsulation in pectin microgels and inulin extracted from native crops of Jerusalem artichoke (JAI) was evaluated as a natural strategy to increase the survival of Lactobacillus paracasei subsp. tolerans F2 selected for its probiotic properties in Oncorhynchus mykiss. The strain was able to grow and ferment JAI in modified MRS broth, increasing cell population (∼+5 log units) with a net decrease in pH (6.

View Article and Find Full Text PDF

The main objective of the research was to evaluate the performance of synbiotic delivery systems using pectin microgels on the protection of two probiotic strains (Lactobacillus casei ATCC 393 and Lactobacillus rhamnosus strain GG [ATCC 53103]) to simulated gastrointestinal digestion (GD) and storage conditions (4 ± 1 °C) in a 42 days trial. Microgel particles were prepared by ionotropic gelation method and three variables were evaluated: incubation time (24 and 48 h), free vs encapsulated cells, and presence or absence of prebiotic (commercial and Jerusalem artichoke inulin). Results demonstrated an encapsulation efficiency of 96 ± 4% into particles with a mean diameter between 56 and 118 μm.

View Article and Find Full Text PDF