An ironic statement transmits the opposite meaning to its literal counterpart and is one of the most complex communicative acts. Thus, it has been proposed to be a good indicator of social communication ability. Prosody and facial expression are two crucial paralinguistic cues that can facilitate the understanding of ironic statements.
View Article and Find Full Text PDFBacillus Calmette-Guérin (BCG) is widely used in the clinic to effectively treat superficial urinary bladder cancer. However, a significant proportion of patients who fail to respond to BCG risk cystectomy or death. Though more than 3 million cancer treatments with BCG occur annually, surprisingly little is known about the initial signaling cascades activated by BCG.
View Article and Find Full Text PDFThe Na/Ca exchanger (NCX) is a membrane antiporter that has been identified in the plasma membrane, the inner membrane of the nuclear envelope and in the membrane of the endoplasmic reticulum (ER). In humans, three genes have been identified, encoding unique NCX proteins. Although extensively studied, the NCX's sub-cellular localization and mechanisms regulating the activity of different subtypes are still ambiguous.
View Article and Find Full Text PDFTestosterone is known to induce cardiac hypertrophy through androgen receptor (AR)-dependent and -independent pathways, but the molecular underpinnings of the androgen action remain poorly understood. Previous work has shown that Ca/calmodulin-dependent protein kinase II (CaMKII) and myocyte-enhancer factor 2 (MEF2) play key roles in promoting cardiac myocyte growth. In order to gain mechanistic insights into the action of androgens on the heart, we investigated how testosterone affects CaMKII and MEF2 in cardiac myocyte hypertrophy by performing studies on cultured rat cardiac myocytes and hearts obtained from adult male orchiectomized (ORX) rats.
View Article and Find Full Text PDFTestosterone induces cardiac hypertrophy through a mechanism that involves a concerted crosstalk between cytosolic and nuclear signaling pathways. Nuclear factor of activated T-cells (NFAT) is associated with the promotion of cardiac hypertrophy, glycogen synthase kinase-3β (GSK-3β) is considered to function as a negative regulator, mainly by modulating NFAT activity. However, the role played by calcineurin-NFAT and GSK-3β signaling in testosterone-induced cardiac hypertrophy has remained unknown.
View Article and Find Full Text PDFThe intrinsic regenerative capacity of human fetal cardiac mesenchymal stromal cells (MSCs) has not been fully characterized. Here we demonstrate that we can expand cells with characteristics of cardiovascular progenitor cells from the MSC population of human fetal hearts. Cells cultured on cardiac muscle laminin (LN)-based substrata in combination with stimulation of the canonical Wnt/β-catenin pathway showed increased gene expression of ISL1, OCT4, KDR, and NKX2.
View Article and Find Full Text PDFGeneration of new cardiomyocytes is critical for cardiac repair following myocardial injury, but which kind of stimuli is most important for cardiomyocyte regeneration is still unclear. Here we explore if apoptotic stimuli, manifested through caspase activation, influences cardiac progenitor up-regulation and cardiomyocyte differentiation. Using mouse embryonic stem cells as a cellular model, we show that sublethal activation of caspases increases the yield of cardiomyocytes while concurrently promoting the proliferation and differentiation of c-Kit+/α-actininlow cardiac progenitor cells.
View Article and Find Full Text PDFIn cardiomyocytes, Ca(2+) plays a central role in governing both contraction and signaling events that regulate gene expression. Current evidence indicates that discrimination between these two critical functions is achieved by segregating Ca(2+) within subcellular microdomains: transcription is regulated by Ca(2+) release within nuclear microdomains, and excitation-contraction coupling is regulated by cytosolic Ca(2+). Accordingly, a variety of agonists that control cardiomyocyte gene expression, such as endothelin-1, angiotensin-II or insulin-like growth factor-1, share the feature of triggering nuclear Ca(2+) signals.
View Article and Find Full Text PDFRationale: Dihydropyridines are widely used for the treatment of several cardiac diseases due to their blocking activity on L-type Ca(2+) channels and their renowned antioxidant properties.
Methods: We synthesized six novel dihydropyridine molecules and performed docking studies on the binding site of the L-type Ca(2+) channel. We used biochemical techniques on isolated adult rat cardiomyocytes to assess the efficacy of these molecules on their Ca(2+) channel-blocking activity and antioxidant properties.
A tissue-engineered oesophageal scaffold could be very useful for the treatment of pediatric and adult patients with benign or malignant diseases such as carcinomas, trauma or congenital malformations. Here we decellularize rat oesophagi inside a perfusion bioreactor to create biocompatible biological rat scaffolds that mimic native architecture, resist mechanical stress and induce angiogenesis. Seeded allogeneic mesenchymal stromal cells spontaneously differentiate (proven by gene-, protein and functional evaluations) into epithelial- and muscle-like cells.
View Article and Find Full Text PDFInsulin-like growth factor 1 (IGF-1) signaling regulates contractility, metabolism, hypertrophy, autophagy, senescence, and apoptosis in the heart. IGF-1 deficiency is associated with an increased risk of cardiovascular disease, whereas cardiac activation of IGF-1 receptor (IGF-1R) protects from the detrimental effects of a high-fat diet and myocardial infarction. IGF-1R activates multiple pathways through its intrinsic tyrosine kinase activity and through coupling to heterotrimeric G protein.
View Article and Find Full Text PDFTransplantation of human embryonic stem cells (hESCs), like other allogeneic cellular transplants, require immunomodulation or immunosuppression in order to be maintained in the recipient. Costimulation blockade applied at the time of transplantation inhibits costimulatory signals in the immunological synapse leading to a state of anergy in the donor reactive T-cell population and a state of immunological tolerance in the host. In models of solid organ transplantation, tolerance is maintained by the infiltration of Foxp3(+) regulatory T cells into the graft.
View Article and Find Full Text PDFIn the heart, insulin-like growth factor-1 (IGF-1) is a peptide with pro-hypertrophic and anti-apoptotic actions. The pro-hypertrophic properties of IGF-1 have been attributed to the extracellular regulated kinase (ERK) pathway. Recently, we reported that IGF-1 also increases intracellular Ca(2+) levels through a pertussis toxin (PTX)-sensitive G protein.
View Article and Find Full Text PDFBackground: Polycystin-2 (PC2), encoded by the gene that is mutated in autosomal dominant polycystic kidney disease (ADPKD), functions as a calcium (Ca(2+)) permeable ion channel. Considerable controversy remains regarding the subcellular localization and signaling function of PC2 in kidney cells.
Methods: We investigated the subcellular PC2 localization by immunocytochemistry and confocal microscopy in primary cultures of human and rat proximal tubule cells after stimulating cytosolic Ca(2+) signaling.
Rationale: The ability of a cell to independently regulate nuclear and cytosolic Ca(2+) signaling is currently attributed to the differential distribution of inositol 1,4,5-trisphosphate receptor channel isoforms in the nucleoplasmic versus the endoplasmic reticulum. In cardiac myocytes, T-tubules confer the necessary compartmentation of Ca(2+) signals, which allows sarcomere contraction in response to plasma membrane depolarization, but whether there is a similar structure tunneling extracellular stimulation to control nuclear Ca(2+) signals locally has not been explored.
Objective: To study the role of perinuclear sarcolemma in selective nuclear Ca(2+) signaling.
Background: Cardiovascular toxicity is a major limiting factor in drug development and requires multiple cost-effective models to perform toxicological evaluation. Zebrafish is an excellent model for many developmental, toxicological and regenerative studies. Using approaches like morpholino knockdown and electrocardiogram, researchers have demonstrated physiological and functional similarities between zebrafish heart and human heart.
View Article and Find Full Text PDFOscillatory fluctuations in the cytosolic concentration of free calcium ions (Ca(2+)) are considered a ubiquitous mechanism for controlling multiple cellular processes. Inositol 1,4,5-trisphosphate (IP(3)) receptors (IP(3)R) are intracellular Ca(2+) release channels that mediate Ca(2+) release from endoplasmic reticulum (ER) Ca(2+) stores. The three IP(3)R subtypes described so far exhibit differential structural, biophysical, and biochemical properties.
View Article and Find Full Text PDFThroughout evolution, organisms have devised strategies to limit fertility in case of prolonged starvation. In mammals, the liver plays a central role in the orchestration of mechanisms allowing for the maintenance of energy homeostasis. We here demonstrate that dietary amino acids regulate the transcriptional activity of hepatic estrogen receptor alpha (ERα) through an mTOR-dependent mechanism.
View Article and Find Full Text PDFAndrogens are associated with important effects on the heart, such as hypertrophy or apoptosis. These responses involve the intracellular androgen receptor. However, the mechanisms of how androgens activate several membrane signaling pathways are not fully elucidated.
View Article and Find Full Text PDFIn the heart, insulin-like growth factor-1 (IGF-1) is a pro-hypertrophic and anti-apoptotic peptide. In cultured rat cardiomyocytes, IGF-1 induced a fast and transient increase in Ca(2+)(i) levels apparent both in the nucleus and cytosol, releasing this ion from intracellular stores through an inositol 1,4,5-trisphosphate (IP(3))-dependent signaling pathway. Intracellular IP(3) levels increased after IGF-1 stimulation in both the presence and absence of extracellular Ca(2+).
View Article and Find Full Text PDF