Publications by authors named "Cristian Giardina"

We consider spin models on complex networks frequently used to model social and technological systems. We study the annealed ferromagnetic Ising model for random networks with either independent edges (Erdős-Rényi) or prescribed degree distributions (configuration model). Contrary to many physical models, the annealed setting is poorly understood and behaves quite differently than the quenched system.

View Article and Find Full Text PDF

Usually, in a nonequilibrium setting, a current brings mass from the highest density regions to the lowest density ones. Although rare, the opposite phenomenon (known as "uphill diffusion") has also been observed in multicomponent systems, where it appears as an artificial effect of the interaction among components. We show here that uphill diffusion can be a substantial effect, i.

View Article and Find Full Text PDF

We investigate the low temperature phase of the three dimensional Edward-Anderson model with Bernoulli random couplings. We show that, at a fixed value Q of the overlap, the model fulfills the clustering property: The connected correlation functions between two local overlaps have power law decay. Our findings are in agreement with the replica symmetry breaking theory and show that the overlap is a good order parameter.

View Article and Find Full Text PDF

We test the property of ultrametricity for the spin-glass three-dimensional Edwards-Anderson model in zero magnetic field with numerical simulations up to 20(3) spins. We find an excellent agreement with the prediction of the mean field theory. Since ultrametricity is not compatible with a trivial structure of the overlap distribution, our result contradicts the droplet theory.

View Article and Find Full Text PDF

We study the relative fluctuations of the link overlap and the square standard overlap in the three-dimensional Gaussian Edwards-Anderson model with zero external field. We first analyze the correlation coefficient and find that the two quantities are uncorrelated above the critical temperature. Below the critical temperature we find that the link overlap has vanishing fluctuations for fixed values of the square standard overlap and large volumes.

View Article and Find Full Text PDF

We introduce a numerical procedure to evaluate directly the probabilities of large deviations of physical quantities, such as current or density, that are local in time. The large-deviation functions are given in terms of the typical properties of a modified dynamics, and since they no longer involve rare events, can be evaluated efficiently and over a wider ranges of values. We illustrate the method with the current fluctuations of the Totally Asymmetric Exclusion Process and with the work distribution of a driven Lorentz gas.

View Article and Find Full Text PDF