Publications by authors named "Cristian Blanco-Tirado"

Article Synopsis
  • Researchers developed a new AI model using computational chemistry data to create optimized matrices for Matrix-Assisted Laser Desorption/Ionization Mass Spectrometry (MALDI MS) based on Electron Transfer (ET) processes.
  • They processed existing data of 30 ET matrices, generated a large library of over 82,000 compounds with varied structures, and selected diverse compounds using clustering techniques.
  • The final AI model identified key structural characteristics that lead to high ionization energy values, suggesting these attributes are ideal for effective MALDI matrices.
View Article and Find Full Text PDF

The intricate composition of microalgal pigments plays a crucial role in various biological processes, from photosynthesis to biomarker identification. Traditional pigment analysis methods involve complex extraction techniques, posing challenges in maintaining analyte integrity. In this study, we employ Electron Transfer Matrix-Assisted Laser Desorption/Ionization Mass Spectrometry (ET-MALDI-MS) to compare the pigmentary profiles of intact cells, chloroplasts, and solvent extracts.

View Article and Find Full Text PDF

Nanocellulose, a versatile nanomaterial with a wide range of applications, is gaining significant attention for its sustainable and eco-friendly properties. In this study, we investigate the influence of reaction variables on the surface chemistry of TEMPO-oxidized cellulose nanofibers (TOCN) from palm oil empty fruit bunch (EFB) fibers, a high cellulose content biomass. Reaction time, primary oxidizing agent, and a pretreatment process affect, to various extents, the surface chemistry of EFB-TOCN.

View Article and Find Full Text PDF

Cacao pod husks (CHs), the most abundant by-product of cacao beans production, can potentially become a source of functional ingredients for the food, cosmetic, and pharmaceutical industries. Three pigment samples (yellow, red, and purple) from lyophilized and ground cacao pod husk epicarp (CHE), were isolated by ultrasound-assisted solvent extraction, with yields between 11 and 14 wt%. The pigments exhibited UV-Vis flavonoid-related absorption bands at 283 nm and 323 nm and, only for the purple extract, reflectance bands in the 400-700 nm range.

View Article and Find Full Text PDF

The method describes pigment analysis from microalgae/phytoplankton extracts using electron-transfer Matrix-Assisted Laser Desorption Ionization Mass Spectrometry (ET MALDI MS). Current microalgae/phytoplankton pigment analysis requires resource- and time-intensive chromatographic methods due to the broad polarity range of the target analytes. On the other hand, traditional MALDI MS chlorophyll analysis, using proton-transfer matrices such as 2,5-dihydroxybenzoic acid (DHB) or α-cyano-4-hydroxycinnamic acid (CHCA), results in central metal loss and phytol-ester cleavage.

View Article and Find Full Text PDF

The global chocolate value chain is based exclusively on cacao beans (CBs). With few exceptions, most CBs traded worldwide are produced under a linear economy model, where only 8 to 10% of the biomass ends up in chocolate-related products. This contribution reports the mass balance and composition dynamics of cacao fruit biomass outputs throughout one full year of the crop cycle.

View Article and Find Full Text PDF

Worldwide only 8% of the biomass from harvested cacao fruits is used, as cacao beans, in chocolate-based products. Cacao mucilage exudate (CME), a nutrient-rich fluid, is usually lost during cacao beans fermentation. CME's composition and availability suggest a potential carbon source for cellulose production.

View Article and Find Full Text PDF

Electron-transfer ionization in matrix-assisted laser desorption/ionization (ET-MALDI) is widely used for the analysis of functional materials that are labile, unstable, and reactive in nature. However, conventional ET matrices (e.g.

View Article and Find Full Text PDF

Phenylenevinylene oligomers (PVs) have outstanding photophysical characteristics for applications in the growing field of organic electronics. Yet, PVs are also versatile molecules, the optical and physicochemical properties of which can be tuned by manipulation of their structure. We report the synthesis, photophysical, and MS characterization of eight PV derivatives with potential value as electron transfer (ET) matrices for UV-MALDI.

View Article and Find Full Text PDF