Publications by authors named "Cristian Bachmann"

Plasmonic materials can be utilized as effective platforms to enhance luminescent signals of luminescent metal nanoclusters (LMNCs). Both surface enhanced fluorescence (SEF) and shell-isolated nanoparticle-enhanced fluorescence (SHINEF) strategies take advantage of the localized and increased external electric field created around the plasmonic metal surface when excited at or near their characteristic plasmonic resonance. In this context, we present an experimental and computational study of different plasmonic composites, (Ag) Ag@SiO and (Au) Au@SiO nanoparticles, which were used to enhance the luminescent signal of Au nanoclusters coated with glutathione (GSH) molecule (AuGSH NCs).

View Article and Find Full Text PDF

This study investigates the critical role of polymer matrices in optimizing luminescence and energy transfer, utilizing the commercial dyes Coumarin 6 (C6) and Rhodamine B (RhB) as a donor-acceptor pair. Solution-phase experiments revealed a dependence of energy transfer efficiency on solvent dielectric constant. Furthermore, embedding the dyes within Poly(methyl methacrylate) (PMMA) or Poly(vinyl butyral) (PVB) matrices significantly enhance energy transfer due to increased molecular proximity.

View Article and Find Full Text PDF

Aggregation-Induced Emission (AIE) luminogens have garnered significant interest due to their distinctive applications in different applications. Among the diverse molecular architectures, those based on triphenylamine and thiophene hold prominence. However, a comprehensive understanding of the deactivation mechanism both in solution and films remains lacking.

View Article and Find Full Text PDF