Publications by authors named "Cristian Arredondo"

Astrocytes play a critical role in the maintenance of a healthy central nervous system and astrocyte dysfunction has been implicated in various neurodegenerative disorders, including amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD). There is compelling evidence that mouse and human ALS and ALS/FTD astrocytes can reduce the number of healthy wild-type motoneurons (MNs) in co-cultures or after treatment with astrocyte conditioned media (ACM), independently of their genotype. A growing number of studies have shown that soluble toxic factor(s) in the ACM cause non-cell autonomous MN death, including our recent identification of inorganic polyphosphate (polyP) that is excessively released from mouse primary astrocytes (, , and ) and human induced pluripotent stem cells (iPSC)-derived astrocytes () to kill MNs.

View Article and Find Full Text PDF

Non-cell-autonomous mechanisms contribute to neurodegenerative diseases such as amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD), in which astrocytes release unidentified factors that are toxic to motoneurons (MNs). We report here that mouse and patient iPSC-derived astrocytes with diverse ALS/FTD-linked mutations (SOD1, TARDBP, and C9ORF72) display elevated levels of intracellular inorganic polyphosphate (polyP), a ubiquitous, negatively charged biopolymer. PolyP levels are also increased in astrocyte-conditioned media (ACM) from ALS/FTD astrocytes.

View Article and Find Full Text PDF

Considered relevant during allergy responses, numerous observations have also identified mast cells (MCs) as critical effectors during the progression and modulation of several neuroinflammatory conditions, including Alzheimer's disease (AD) and amyotrophic lateral sclerosis (ALS). MC granules contain a plethora of constituents, including growth factors, cytokines, chemokines, and mitogen factors. The release of these bioactive substances from MCs occurs through distinct pathways that are initiated by the activation of specific plasma membrane receptors/channels.

View Article and Find Full Text PDF

NR4A is a nuclear receptor protein family whose members act as sensors of cellular environment and regulate multiple processes such as metabolism, proliferation, migration, apoptosis, and autophagy. Since the ligand binding domains of these receptors have no cavity for ligand interaction, their function is most likely regulated by protein abundance and post-translational modifications. In particular, NR4A1 is regulated by protein abundance, phosphorylation, and subcellular distribution (nuclear-cytoplasmic translocation), and acts both as a transcription factor and as a regulator of other interacting proteins.

View Article and Find Full Text PDF

Background: Hexanucleotide repeat expansions of the GC motif in a non-coding region of the C9ORF72 gene are the most common genetic cause of amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD). Tissues from C9ALS/FTD patients and from mouse models of ALS show RNA foci, dipeptide-repeat proteins, and notably, widespread alterations in the transcriptome. Epigenetic processes regulate gene expression without changing DNA sequences and therefore could account for the altered transcriptome profiles in C9ALS/FTD; here, we explore whether the critical repressive marks H3K9me2 and H3K9me3 are altered in a recently developed C9ALS/FTD BAC mouse model (C9BAC).

View Article and Find Full Text PDF

CoREST family of transcriptional co-repressors regulates gene expression and cell fate determination during development. CoREST co-repressors recruit with different affinity the histone demethylase LSD1 (KDM1A) and the deacetylases HDAC1/2 to repress with variable strength the expression of target genes. CoREST protein levels are differentially regulated during cell fate determination and in mature tissues.

View Article and Find Full Text PDF

Dopamine neurons are overstimulated by drugs of abuse and suffer molecular alterations that lead to addiction behavior. Nurr1 is a transcription factor crucial for dopamine neurons survival and dopamine production, activating the transcription of key genes like tyrosine hydroxylase (TH). Interestingly, nuclear factor-kappa B (NF-κB) has emerged as a new Nurr1 partner in response to inflammatory stimulus.

View Article and Find Full Text PDF

Nurr1 (NR4A2) is a transcription factor that belongs to the orphan NR4A group of the nuclear receptor superfamily. Nurr1 plays key roles in the origin and maintenance of midbrain dopamine neurons, and peripheral inflammatory processes. PIASγ, a SUMO-E3 ligase, represses Nurr1 transcriptional activity.

View Article and Find Full Text PDF

The mechanisms of peroxisomal biogenesis remain incompletely understood, specially regarding the role of the endoplasmic reticulum (ER) in human cells, where genetic disorders of peroxisome biogenesis lead to Zellweger syndrome (ZS). The Pex3p peroxisomal membrane protein (PMP) required for early steps of peroxisome biogenesis has been detected in the ER in yeast but not in mammalian cells. Here, we show that Pex3p-GFP expressed in a new ZS cell line (MR), which lacks peroxisomes due to a mutation in the PEX3 gene, localizes first in the ER and subsequently in newly formed peroxisomes.

View Article and Find Full Text PDF

In lymphocytes, Fas activation leads to both apoptosis and necrosis, whereby the latter form of cell death is linked to delayed production of endogenous ceramide and is mimicked by exogenous administration of long- and short-chain ceramides. Here molecular events associated with noncanonical necrotic cell death downstream of ceramide were investigated in A20 B lymphoma and Jurkat T cells. Cell-permeable, C6-ceramide (C6), but not dihydro-C6-ceramide (DH-C6), induced necrosis in a time- and dose-dependent fashion.

View Article and Find Full Text PDF

Peroxisomes are thought to be formed by division of pre-existing peroxisomes after the import of newly synthesized proteins. However, it has been recently suggested that the endoplasmic reticulum (ER) provides an alternative de novo mechanism for peroxisome biogenesis in some cells. To test a possible role of the ER-Golgi transit in peroxisome biogenesis in mammalian cells, we evaluated the biogenesis of three peroxisomal membrane proteins (PMPs): ALDRP (adrenoleukodystrophy related protein), PMP70 and Pex3p in CHO cells.

View Article and Find Full Text PDF

Caveolin-1 reportedly acts as a tumor suppressor and promotes events associated with tumor progression, including metastasis. The molecular mechanisms underlying such radical differences in function are not understood. Recently, we showed that caveolin-1 inhibits expression of the inhibitor of apoptosis protein survivin via a transcriptional mechanism involving the beta-catenin-Tcf/Lef pathway.

View Article and Find Full Text PDF

To assess the mechanism of P2X2 receptor modulation by transition metals, the cDNA for the wild-type receptor was injected to Xenopus laevis oocytes and examined 48-72 h later by the two-electrode voltage-clamp technique. Copper was the most potent of the trace metals examined; at 10 microm it evoked a 25-fold potentiation of the 10 microm ATP-gated currents. Zinc, nickel or mercury required 10-fold larger concentrations to cause comparable potentiations, while palladium, cobalt or cadmium averaged only 12- and 3-fold potentiations, respectively.

View Article and Find Full Text PDF