Publications by authors named "Cristhian Ildefonso"

Purpose: Inflammation and oxidative stress contribute to age-related macular degeneration (AMD) and other retinal diseases. We tested a cell-penetrating peptide from the kinase inhibitory region of an intracellular checkpoint inhibitor suppressor of cytokine signaling 3 (R9-SOCS3-KIR) peptide for its ability to blunt the inflammatory or oxidative pathways leading to AMD.

Methods: We used anaphylatoxin C5a to mimic the effect of activated complement, lipopolysaccharide (LPS), and tumor necrosis factor alpha (TNFα) to stimulate inflammation and paraquat to induce mitochondrial oxidative stress.

View Article and Find Full Text PDF

Proteasomes are the central proteolytic machines that are critical for breaking down most of the damaged and abnormal proteins in human cells. Although universally applicable drugs are not yet available, the stimulation of proteasomal activity is being analyzed as a proof-of-principle strategy to increase cellular resistance to a broad range of proteotoxic stressors. These approaches have included the stimulation of proteasomes through the overexpression of individual proteasome subunits, phosphorylation, or conformational changes induced by small molecules or peptides.

View Article and Find Full Text PDF

The advanced form of AMD, geographic atrophy, is associated with increased RPE oxidative stress and chronic inflammation. Here we evaluated the effects of delivering an anti-inflammatory viral gene by an AAV-vector in a mouse model of geographic atrophy. We measured changes in retinal function, structure, and morphology over nine months with electroretinography, optical coherence tomography, and fundoscopy, respectively.

View Article and Find Full Text PDF

Autosomal dominant retinitis pigmentosa (adRP) is frequently caused by mutations in RHO, the gene for rhodopsin. In previous experiments in dogs with the T4R mutation in RHO, an AAV2/5 vector expressing an shRNA directed to human and dog RHO mRNA and an shRNA-resistant human RHO cDNA (AAV-RHO820-shRNA820) prevented retinal degeneration for more than eight months following injection. It is crucial, however, to determine if this RNA replacement vector acts in a mutation-independent and species-independent manner.

View Article and Find Full Text PDF

The NLRP3 inflammasome, a cytoplasmic signal transduction complex that regulates inflammation, has been implicated in the pathogenesis of age-related macular degeneration (AMD), the leading cause of visual impairment in industrialized countries. We tested the therapeutic effect of anti-inflammatory gene therapy, delivered preventively, in Liver-X-Receptor alpha knockout () mice, which exhibit features of dry AMD. mice were treated with an adeno-associated virus (AAV) vector that delivers a secretable and cell-penetrating form of the caspase activation and recruitment domain (CARD).

View Article and Find Full Text PDF

Purpose: Uveitis is an ocular inflammation that can affect individuals of all ages and is a major cause of blindness. We have tested the therapeutic efficacy of a cell penetrating peptide from the kinase inhibitory region of suppressor of cytokine signaling 1, denoted as R9-SOCS1-KIR.

Methods: We stimulated J774A.

View Article and Find Full Text PDF

Adeno-associated virus (AAV) is a helper-dependent single-stranded DNA parvovirus. Over the years, AAV has become the vector of choice in the gene therapy field due to its safety profile and low immunogenicity. With a carrying capacity of 4.

View Article and Find Full Text PDF

Retinitis pigmentosa (RP) is a group of blinding disorders caused by diverse mutations, including in rhodopsin (RHO). Effective therapies have yet to be discovered. The I307N Rho mouse is a light-inducible model of autosomal dominant RP.

View Article and Find Full Text PDF

Adenoviruses cause upper respiratory infections, conjunctivitis, keratitis, and gastrointestinal illness. These can be fatal in immunocompromised individuals. Adenoviruses have also been engineered into viral vectors to deliver therapeutic genes or induce immunity as vaccine carriers.

View Article and Find Full Text PDF

Viruses are widely used as a platform for the production of therapeutics. Vaccines containing live, dead and components of viruses, gene therapy vectors and oncolytic viruses are key examples of clinically-approved therapeutic uses for viruses. Despite this, the use of virus-derived proteins as natural sources for immune modulators remains in the early stages of development.

View Article and Find Full Text PDF

Experimental autoimmune uveitis (EAU) in rodents recapitulates many features of the disease in humans and has served as a useful tool for the development of therapeutics. A peptide from C-terminus of interferon α1, conjugated to palmitoyl-lysine for cell penetration, denoted as IFNα-C, was tested for its anti-inflammatory properties in ARPE-19 cells, followed by testing in a mouse model of EAU. Treatment with IFNα-C and evaluation by RT-qPCR showed the induction of anti-inflammatory cytokines and chemokine.

View Article and Find Full Text PDF

Geographic atrophy (GA), the advanced form of AMD, has been linked to oxidative stress within the RPE and with low-grade inflammation. The RPE-specific Sod2 knockout mouse model of GA develops increase oxidative stress and slow retinal degeneration. Mice of the SOD2::VMD2 genotype were injected subcutaneously with either saline or 3 mg/kg of lipopolysaccharide (LPS) at 8 weeks of age.

View Article and Find Full Text PDF

Uveoretinitis is an ocular autoimmune disease caused by the activation of autoreactive T- cells targeting retinal antigens. The myxoma M013 gene is known to block NF-κB (Nuclear Factor kappa-light-chain-enhancer of activated B cells) and inflammasome activation, and its gene delivery has been demonstrated to protect the retina against lipopolysaccharide (LPS)-induced uveitis. In this report we tested the efficacy of M013 in an experimental autoimmune uveoretinitis (EAU) mouse model.

View Article and Find Full Text PDF

Age-related macular degeneration (AMD) has been linked to oxidative damage and para-inflammation, an activation of inflammasome signaling in the retinal pigment epithelium (RPE) and the underlying choriocapillaris. Herein, we tested the efficacy of a gene-delivered caspase-1 inhibitor in controlling the retinal degeneration observed in two models of RPE-choroid oxidative damage. In an acute model of oxidative stress (NaIO3 injection), eyes pre-treated with the sGFP-TatCARD (trans-activator of transcription; caspase activation and recruitment domain) vector demonstrated a recovery of retinal function and partial protection of RPE structure 1 month after damage, in contrast with control-treated eyes.

View Article and Find Full Text PDF

Age-related macular degeneration (AMD) is the leading cause of vision loss in the western world. Recent evidence suggests that RPE and photoreceptors have an interconnected metabolism and that mitochondrial damage in RPE is a trigger for degeneration in both RPE and photoreceptors in AMD. To test this hypothesis, this study was designed to induce mitochondrial damage in RPE in mice to determine whether this is sufficient to cause RPE and photoreceptor damage characteristic of AMD.

View Article and Find Full Text PDF

Recombinant adeno-associated virus (rAAV) has become an important gene delivery vector for the treatment of inherited retinal degenerative diseases. Many of the mutations leading to retinal degeneration are inherited in an autosomal-dominant pattern and can produce toxic gain-of-function and/or dominant-negative effects. Here we describe an allele-independent gene therapy strategy with rAAV to treat autosomal-dominant retinal degenerative diseases.

View Article and Find Full Text PDF

Purpose: The I307N rhodopsin (Rho) mouse is a light-inducible model of autosomal dominant retinitis pigmentosa (adRP) that may be useful in testing therapies. We investigated the time-course of retinal changes of the I307N Rho mouse with spectral-domain optical coherence tomography (SD-OCT).

Methods: SD-OCT was performed up to day 30 after light damage; electroretinography (ERG) was employed to evaluate photoreceptor function.

View Article and Find Full Text PDF

Adeno-associated virus (AAV) has become the preferred viral gene transfer platform for ocular gene therapy due to its known safety profile in human clinical trials. This viral vector has a 4.7 kbp (kilo base pair) carrying capacity (single-stranded DNA) and only retains the inverted terminal repeats (ITRs) from the original virus.

View Article and Find Full Text PDF

We describe an immunosuppressive peptide corresponding to the kinase inhibitory region (KIR) of the intracellular checkpoint protein suppressor of cytokine signaling 1 (SOCS-1) that binds to the phospho-tyrosine containing regions of the tyrosine kinases JAK2 and TYK2 and the adaptor protein MAL, and thereby inhibits signaling downstream from these signaling mediators. The peptide, SOCS1-KIR, is thus capable of downregulating overactive JAK/STAT or NF-kB signaling in somatic cells, including those in many compartments of the eye. Attachment of poly-arginine to this peptide (R9-SOCS1-KIR) allows it to penetrate the plasma membrane in aqueous media.

View Article and Find Full Text PDF

The eye is an immuno-privileged organ. However, certain diseases such as uveitis are intrinsically linked to inflammation. In several retinal degenerative diseases, there is a unique damage at the onset of the disease, but evidence suggests that chronic and low-grade inflammatory processes play an important role in their progression.

View Article and Find Full Text PDF

To examine the biochemical influences that may contribute to the success of gene therapy for ocular disorders, the role of versican, a vitreous component, in adenoviral-mediated transgene expression was examined. Versican is a large chondroitin sulfate-containing, hyaluronic acid-binding proteoglycan present in the extracellular matrix and in ocular vitreous body. Y79 retinoblastoma cells and CD44-negative SK-N-DZ neuroblastoma cells transduced with adenoviral vectors in the presence of versican respond with an activation of transgene expression.

View Article and Find Full Text PDF

Purpose: To investigate whether antioxidant gene therapy protects the structure and function of retina in a murine model of RPE atrophy, and to determine whether antioxidant gene therapy can prevent degeneration once it has begun.

Methods: We induced mitochondrial oxidative stress in RPE by conditional deletion of Sod2, the gene for manganese superoxide dismutase (MnSOD). These mice exhibited localized atrophy of the RPE and overlying photoreceptors.

View Article and Find Full Text PDF

Purpose: Chronic oxidative stress and subacute inflammation have been implicated as causes of age-related macular degeneration (AMD). In this study, we tested whether an orally available 5-OH-tryptamine (5HT) 1a receptor agonist, xaliproden, could protect against retinal pigment epithelium (RPE) cell damage in culture and in a mouse model of geographic atrophy.

Methods: Paraquat was used to create mitochondrial oxidative stress in ARPE-19 cells, and tumor necrosis factor-α (TNF-α) was used to stimulate the production of inflammatory cytokines in these cells.

View Article and Find Full Text PDF

Purpose: Oxidative stress has been linked to several ocular diseases, initiating an inflammatory response that increases tissue injury. The Nrf2 transcription factor regulates expression of antioxidant genes and is tightly regulated by Kelch-Like ECH-Associated Protein 1 (Keap-1). We evaluate the antioxidant and anti-inflammatory properties of an adeno-associated virus (AAV) vector delivering an Nrf2-derived peptide that binds Keap-1.

View Article and Find Full Text PDF

Age related macular degeneration (AMD) is the most common cause of blindness among people of 65 years and older in developed countries (Klein and Klein, Invest Ophthalmol Vis Sci 54:7395-7401, 2013). Recent advances in dry AMD research points towards an important role of the inflammatory response in the development of the disease. The presence of inflammatory cells, antibodies, complement factors and pro-inflammatory cytokines in AMD retinas and drusen indicates that the immune system could be an important driving force in dry AMD.

View Article and Find Full Text PDF