During normal childhood development, functional brain networks evolve over time in parallel with changes in neuronal oscillations. Previous studies have demonstrated differences in network topology with age, particularly in neonates and in cohorts spanning from birth to early adulthood. Here, we evaluate the developmental changes in EEG functional connectivity with a specific focus on the first 2 years of life.
View Article and Find Full Text PDFAnnu Int Conf IEEE Eng Med Biol Soc
November 2021
The infant brain is rapidly developing, and these changes are reflected in scalp electroencephalography (EEG) features, including power spectrum and sleep spindle characteristics. These biomarkers not only mirror infant development, but they are also altered by conditions such as epilepsy, autism, developmental delay, and trisomy 21. Prior studies of early development were generally limited by small cohort sizes, lack of a specific focus on infancy (0-2 years), and exclusive use of visual marking for sleep spindles.
View Article and Find Full Text PDFFunctional connectivity networks are valuable tools for studying development, cognition, and disease in the infant brain. In adults, such networks are modulated by the state of consciousness and the circadian rhythm; however, it is unknown if infant brain networks exhibit similar variation, given the unique temporal properties of infant sleep and circadian patterning. To address this, we analyzed functional connectivity networks calculated from long-term EEG recordings (average duration 20.
View Article and Find Full Text PDFScalp high-frequency oscillations (HFOs) are a promising biomarker of epileptogenicity in infantile spasms (IS) and many other epilepsy syndromes, but prior studies have relied on visual analysis of short segments of data due to the prevalence of artifacts in EEG. Here we set out to robustly characterize the rate and spatial distribution of HFOs in large datasets from IS subjects using fully automated HFO detection techniques.We prospectively collected long-term scalp EEG data from 12 subjects with IS and 18 healthy controls.
View Article and Find Full Text PDF