This study examined the impact of participation in an undergraduate biomedical research training program (BUILD PODER) on community college students' academic, career, and psychosocial development. The program leveraged Critical Race Theory (CRT) as a guiding theoretical framework to empower students as learners and social justice advocates as well as to build a bridge to science through respectful, supportive research mentoring relationships (Saetermoe et al., 2017).
View Article and Find Full Text PDFUnderrepresented racial minority (URM) students in science, technology, engineering, and mathematics majors encounter educational, social, and structural challenges on the path toward their degrees and careers. An undergraduate research program grounded in critical race theory was developed and implemented to address this disparity. NIH BUILD PODER focuses on developing science identities in URM students through a culturally relevant and responsive research training environment, ultimately increasing their pursuit of biomedical-related research careers.
View Article and Find Full Text PDFBackground And Purpose: Unconscious bias and explicit forms of discrimination continue to pervade academic institutions. Multicultural and diversity training activities have not been sufficient in making structural and social changes leading to equity, therefore, a new form of critical consciousness is needed to train diverse scientists with new research questions, methods, and perspectives. The purpose of this paper is to describe Building Infrastructure Leading to Diversity (BUILD); Promoting Opportunities for Diversity in Education and Research (PODER), which is an undergraduate biomedical research training program based on transformative framework rooted in Critical Race Theory (CRT).
View Article and Find Full Text PDFThe potential impacts of CO2 leakage from a natural subsurface reservoir on soil and water quality were studied. Field measurements of soil pore CO2 concentrations and visual inspection of plants at Mammoth Mountain, CA, allowed the demarcation of tree-kill and non-tree-kill zones, with CO2 concentrations >100,000 ppm and ∼ 1,000 ppm, respectively. Soils collected from six sites along a transect stretching from the center of the tree-kill zone to an equidistant point into the non-tree-kill zone were analyzed for surface area and organic carbon content.
View Article and Find Full Text PDFEnviron Sci Technol
October 2009
Little is known about the prebiotic mechanisms that initiated the bioavailability of phosphorus, an element essential to life. A better understanding of phosphorus speciation in modern earth environments representative of early earth may help to elucidate the origins of bioavailable phosphorus. This paper presents the first quantitative measurements of phosphite in a pristine geothermal pool representative of early earth.
View Article and Find Full Text PDFThe design and development of an automated flow injection instrument for the determination of arsenite [As(III)] and arsenate [As(V)] in natural waters is described. The instrument incorporates solenoid activated self-priming micropumps and electronic switching valves for controlling the fluidics of the system and a miniature charge-coupled device spectrometer operating in a graphical programming environment. The limits of detection were found to be 0.
View Article and Find Full Text PDFRecent developments in the field of microbiology and research on the origin of life have suggested a possible significant role for reduced, inorganic forms of phosphorus (P) such as phosphite [HPO(3)(2-), P(+III)] and hypophosphite [H(2)PO(2)(-), P(+I)] in the biogeochemical cycling of P. New, robust methods are required for the detection of reduced P compounds in order to confirm the importance of these species in the overall cycling of P in the environment. To this end, we have developed new batch and flow injection (FI) methods for the determination of P(+III) in aqueous solutions.
View Article and Find Full Text PDFIt is commonly assumed that phosphorus occurs almost exclusively in the environment as fully oxidized phosphate (primarily H(2)PO(4)(-) and HPO(4)(2-), where the oxidation state of phosphorus is +V). Recent developments in the field of microbiology and research on the origin of life have suggested a possibly significant role for reduced, inorganic forms of phosphorus in bacterial metabolism and as evolutionary precursors of biological phosphate compounds. Reduced inorganic forms of phosphorus include phosphorus acid (H(3)PO(3), P(+III)), hypophosphorus acid (H(3)PO(2), P(+I)) and various forms of phosphides (P(-III)).
View Article and Find Full Text PDFCurrent doctrine states that phosphorus is incorporated into cells in the pentavalent(V) oxidation state as orthophosphate. However, recent studies show that microorganisms contain enzymes used to metabolize reduced forms of phosphorous, including phosphite(III) and hypophosphite(I), which suggests that there is a natural source for these chemical species. This paper will discuss suppressed conductivity ion chromatography methods developed to detect hypophosphite, phosphite, and orthophosphate in a geothermal water matrix containing fluoride, chloride, bromide, nitrate, hydrogen carbonate and sulfate.
View Article and Find Full Text PDFThis paper investigates the long-term behavior of porous media contaminated by nonvolatile organic compounds (NVOC) in terms of specific interfacial surface area. Specifically, a natural sand, Moffett sand (MS), was contaminated with naphthalene and the surface area was measured repeatedly over time using nitrogen adsorption-desorption techniques. A field-contaminated sand affected by lamp-black material (LB) from former manufactured gas plant operations was also studied.
View Article and Find Full Text PDF