Publications by authors named "Criss Hartzell"

Microvesicles (MVs) are membrane-enclosed, plasma membrane-derived particles released by cells from all branches of life. MVs have utility as disease biomarkers and may participate in intercellular communication; however, physiological processes that induce their secretion are not known. Here, we isolate and characterize annexin-containing MVs and show that these vesicles are secreted in response to the calcium influx caused by membrane damage.

View Article and Find Full Text PDF

The TMEM16A calcium-activated chloride channel is a promising therapeutic target for various diseases. Niclosamide, an anthelmintic medication, has been considered a TMEM16A inhibitor for treating asthma and chronic obstructive pulmonary disease (COPD) but was recently found to possess broad-spectrum off-target effects. Here, we show that, under physiological Ca2+ (200-500 nM) and voltages, niclosamide acutely potentiates TMEM16A.

View Article and Find Full Text PDF

The TMEM16A calcium-activated chloride channel is a promising therapeutic target for various diseases. Niclosamide, an anthelmintic medication, has been considered as a TMEM16A inhibitor for treating asthma and chronic obstructive pulmonary disease, but was recently found to possess broad-spectrum off-target effects. Here we show that, under physiological conditions, niclosamide acutely potentiates TMEM16A without having any inhibitory effect.

View Article and Find Full Text PDF

In vitro models are essential for investigating the molecular, biochemical, and cell-biological aspects of skeletal muscle. Still, models that utilize cell lines or embryonic cells do not fully recapitulate mature muscle fibers in vivo. Protein function is best studied in mature differentiated tissue, where biological context is maintained, but this is often difficult when reliable detection reagents, such as antibodies, are not commercially available.

View Article and Find Full Text PDF

Endothelial cells (ECs) normally form an anticoagulant surface under physiological conditions, but switch to support coagulation following pathogenic stimuli. This switch promotes thrombotic cardiovascular disease. To generate thrombin at physiologic rates, coagulation proteins assemble on a membrane containing anionic phospholipid, most notably phosphatidylserine (PS).

View Article and Find Full Text PDF

Brain-specific angiogenesis inhibitor 1 (BAI1; also called ADGRB1 or B1) is an adhesion G protein-coupled receptor known from studies on macrophages to bind to phosphatidylserine (PS) on apoptotic cells via its N-terminal thrombospondin repeats. A separate body of work has shown that B1 regulates postsynaptic function and dendritic spine morphology via signaling pathways involving Rac and Rho. However, it is unknown if PS binding by B1 has any effect on the receptor's signaling activity.

View Article and Find Full Text PDF

Limb-girdle muscular dystrophy R12 (LGMD-R12) is caused by recessive mutations in the Anoctamin-5 gene (). Although ANO5 myopathy is not X-chromosome linked, we performed a meta-analysis of the research literature and found that three-quarters of patients with LGMD-R12 are males. Females are less likely to present with moderate to severe skeletal muscle and/or cardiac pathology.

View Article and Find Full Text PDF

Mutations in ANO5 (TMEM16E) cause limb-girdle muscular dystrophy R12. Defective plasma membrane repair is a likely mechanism. Using myofibers from Ano5 knockout mice, we show that trafficking of several annexin proteins, which together form a cap at the site of injury, is altered upon loss of ANO5.

View Article and Find Full Text PDF

Methods: Muscle sections were stained for cell boundary (laminin) and myofiber type (myosin heavy chain isoforms). Myosoft, running in the open access software platform FIJI (ImageJ), was used to analyze myofiber size and type in transverse sections of entire gastrocnemius/soleus muscles.

Results: Myosoft provides an accurate analysis of hundreds to thousands of muscle fibers within 25 minutes, which is >10-times faster than manual analysis.

View Article and Find Full Text PDF

Recently there has been a flurry of interest in the regulation of the homo-dimeric calcium-activated chloride channel ANO1 (also known as TMEM16A) by phosphatidylinositol (4,5)-bisphosphate (PI(4,5)P). These recent studies show that upon Ca binding, PI(4,5)P cooperates to maintain the conductive state of ANO1. PI(4,5)P does so by binding to sites or modules on the protein's cytosolic side.

View Article and Find Full Text PDF

ANO1 (TMEM16A) is a Ca-activated Cl channel that regulates diverse cellular functions including fluid secretion, neuronal excitability, and smooth muscle contraction. ANO1 is activated by elevation of cytosolic Ca and modulated by phosphatidylinositol 4,5-bisphosphate [PI(4,5)P]. Here, we describe a closely concerted experimental and computational study, including electrophysiology, mutagenesis, functional assays, and extended sampling of lipid-protein interactions with molecular dynamics (MD) to characterize PI(4,5)P binding modes and sites on ANO1.

View Article and Find Full Text PDF

Neurons of the CNS elaborate highly branched dendritic arbors that host numerous dendritic spines, which serve as the postsynaptic platform for most excitatory synapses. The actin cytoskeleton plays an important role in dendrite development and spine formation, but the underlying mechanisms remain incompletely understood. Tropomodulins (Tmods) are a family of actin-binding proteins that cap the slow-growing (pointed) end of actin filaments, thereby regulating the stability, length, and architecture of complex actin networks in diverse cell types.

View Article and Find Full Text PDF

Limb-girdle muscular dystrophy type 2L (LGMD2L) is a myopathy arising from mutations in ; however, information about the contribution of ANO5 to muscle physiology is lacking. To explain the role of ANO5 in LGMD2L, we previously hypothesized that ANO5-mediated phospholipid scrambling facilitates cell-cell fusion of mononucleated muscle progenitor cells (MPCs), which is required for muscle repair. Here, we show that heterologous overexpression of ANO5 confers Ca-dependent phospholipid scrambling to HEK-293 cells and that scrambling is associated with the simultaneous development of a nonselective ionic current.

View Article and Find Full Text PDF

The TMEM16A-mediated Ca-activated Cl current drives several important physiological functions. Membrane lipids regulate ion channels and transporters but their influence on members of the TMEM16 family is poorly understood. Here we have studied the regulation of TMEM16A by phosphatidylinositol 4,5-bisphosphate (PI(4,5)P2), cholesterol, and fatty acids using patch clamp, biochemistry and fluorescence microscopy.

View Article and Find Full Text PDF

From bacteria to mammals, different phospholipid species are segregated between the inner and outer leaflets of the plasma membrane by ATP-dependent lipid transporters. Disruption of this asymmetry by ATP-independent phospholipid scrambling is important in cellular signaling, but its mechanism remains incompletely understood. Using MD simulations coupled with experimental assays, we show that the surface hydrophilic transmembrane cavity exposed to the lipid bilayer on the fungal scramblase nhTMEM16 serves as the pathway for both lipid translocation and ion conduction across the membrane.

View Article and Find Full Text PDF

Cryo-electron microscopy reveals the structure of a chloride channel that is closely related to a protein that transports lipids.

View Article and Find Full Text PDF

Anoctamin (ANO)/TMEM16 proteins exhibit diverse functions in cells throughout the body and are implicated in several human diseases. Although the founding members ANO1 (TMEM16A) and ANO2 (TMEM16B) are Ca-activated Cl channels, most ANO paralogs are Ca-dependent phospholipid scramblases that serve as channels facilitating the movement (scrambling) of phospholipids between leaflets of the membrane bilayer. Phospholipid scrambling significantly alters the physical properties of the membrane and its landscape and has vast downstream signaling consequences.

View Article and Find Full Text PDF

Key Points: The calcium-activated chloride channel TMEM16A provides a pathway for chloride ion movements that are key in preventing polyspermy, allowing fluid secretion, controlling blood pressure, and enabling gastrointestinal activity. TMEM16A is opened by voltage-dependent calcium binding and regulated by permeant anions and intracellular protons. Here we show that a low proton concentration reduces TMEM16A activity while maximum activation is obtained when the external proton concentration is high.

View Article and Find Full Text PDF

TMEM16A (ANO1), the pore-forming subunit of calcium-activated chloride channels, regulates several physiological and pathophysiological processes such as smooth muscle contraction, cardiac and neuronal excitability, salivary secretion, tumour growth and cancer progression. Gating of TMEM16A is complex because it involves the interplay between increases in intracellular calcium concentration ([Ca(2+)]i), membrane depolarization, extracellular Cl(-) or permeant anions and intracellular protons. Our goal here was to understand how these variables regulate TMEM16A gating and to explain four observations.

View Article and Find Full Text PDF

Limb-girdle muscular dystrophies are a genetically diverse group of diseases characterized by chronic muscle wasting and weakness. Recessive mutations in ANO5 (TMEM16E) have been directly linked to several clinical phenotypes including limb-girdle muscular dystrophy type 2L and Miyoshi myopathy type 3, although the pathogenic mechanism has remained elusive. ANO5 is a member of the Anoctamin/TMEM16 superfamily that encodes both ion channels and regulators of membrane phospholipid scrambling.

View Article and Find Full Text PDF

Since their first descriptions, ion channels have been conceived as proteinaceous conduits that facilitate the passage of ionic cargo between segregated environments. This concept is reinforced by crystallographic structures of cation channels depicting ion conductance pathways completely lined by protein. Although lipids are sometimes present in fenestrations near the pore or may be involved in channel gating, there is little or no evidence that lipids inhabit the ion conduction pathway.

View Article and Find Full Text PDF

Key Points: Calcium-activated chloride channels TMEM16A and TMEM16B support important physiological processes such as fast block of polyspermy, fluid secretion, control of blood pressure and sensory transduction. Given the physiological importance of TMEM16 channels, it is important to study how incoming stimuli activate these channels. Here we study how channels open and close and how the process of gating is regulated.

View Article and Find Full Text PDF

Phospholipid scrambling (PLS) is a ubiquitous cellular mechanism involving the regulated bidirectional transport of phospholipids down their concentration gradient between membrane leaflets. ANO6/TMEM16F has been shown to be essential for Ca(2+)-dependent PLS, but controversy surrounds whether ANO6 is a phospholipid scramblase or an ion channel like other ANO/TMEM16 family members. Combining patch clamp recording with measurement of PLS, we show that ANO6 elicits robust Ca(2+)-dependent PLS coinciding with ionic currents that are explained by ionic leak during phospholipid translocation.

View Article and Find Full Text PDF

Anoctamin 1 (ANO1)/TMEM16A is a Cl(-) channel activated by intracellular Ca(2+) mediating numerous physiological functions. However, little is known of the ANO1 activation mechanism by Ca(2+). Here, we demonstrate that two helices, "reference" and "Ca(2+) sensor" helices in the third intracellular loop face each other with opposite charges.

View Article and Find Full Text PDF