Publications by authors named "Criscitiello M"

While poly(ethylene glycol) (PEG) hydrogels are generally regarded as biologically inert blank slates, concerns over PEG immunogenicity are growing, and the implications for tissue engineering are unknown. Here, we investigate these implications by immunizing mice against PEG to stimulate anti-PEG antibody production and evaluating bone defect regeneration after treatment with bone morphogenetic protein-2-loaded PEG hydrogels. Quantitative analysis reveals that PEG sensitization increases bone formation compared to naive controls, whereas histological analysis shows that PEG sensitization induces an abnormally porous bone morphology at the defect site, particularly in males.

View Article and Find Full Text PDF

The emergence of COVID-19 and severe acute respiratory syndrome (SARS) has prioritized understanding bats' viral tolerance. Myotis bats are exceptionally species rich and have evolved viral tolerance. They also exhibit swarming, a cryptic behavior where large, multi-species assemblages gather for mating, which has been hypothesized to promote interspecific hybridization.

View Article and Find Full Text PDF

Objective: Design and evaluate immune responses of neonatal foals to a mRNA vaccine expressing the virulence-associated protein A (VapA) of Rhodococcus equi.

Animals: Cultured primary equine respiratory tract cells; Serum, bronchoalveolar lavage fluid (BALF), and peripheral blood mononuclear cells (PBMCs) from 30 healthy Quarter Horse foals.

Methods: VapA expression was evaluated by western immunoblot in cultured equine bronchial cells transfected with 4 mRNA constructs encoding VapA.

View Article and Find Full Text PDF

Comparative animal models generate fundamental scientific knowledge of immune responses. However, these studies typically are conducted in mammals because of their biochemical and physiological similarity to humans. Presently, there has been an interest in using teleost fish models to study intestinal immunology, particularly intestinal mucosa immune response.

View Article and Find Full Text PDF

Problem: Interferon-epsilon (IFNε) is the only type I IFN constitutively expressed in the female reproductive tract and fluctuates across the menstrual cycle in humans. Mouse models show that IFNε protects against Chlamydia trachomatis, Herpes Simplex Virus, HIV, and Zika in mice, but human studies are limited. Bacterial sexually transmitted infections (STI) can ascend to the upper genital tract and cause pelvic inflammatory disease (PID) and subsequent infertility.

View Article and Find Full Text PDF

The genomes of most vertebrates contain many V, D, and J gene segments within their Ig loci to construct highly variable CDR3 sequences through combinatorial diversity. This nucleotide variability translates into an antibody population containing extensive paratope diversity. Cattle have relatively few functional VDJ gene segments, requiring innovative approaches for generating diversity like the use of ultralong-encoding IGHV and IGHD gene segments that yield dramatically elongated CDR H3.

View Article and Find Full Text PDF

In the mammalian immune system, the surrogate light chain (SLC) shapes the antibody repertoire during B cell development by serving as a checkpoint for production of functional heavy chains (HC). Structural studies indicate that tail regions of VpreB contact and cover the third complementarity-determining region of the HC (CDR H3). However, some species, particularly bovines, have CDR H3 regions that may not be compatible with this HC-SLC interaction model.

View Article and Find Full Text PDF

The low diversity in marine mammal major histocompatibility complex (MHC) appears to support the hypothesis of reduced pathogen selective pressure in aquatic systems compared to terrestrial environments. However, the lack of characterization of the aquatic and evolutionarily distant Sirenia precludes drawing more generalized conclusions. Therefore, we aimed to characterize the MHC DQB diversity of two manatee species and compare it with those reported for marine mammals.

View Article and Find Full Text PDF

Problem: Interferon epsilon (IFNε) is a unique type I IFN that is expressed in response to sex steroids. Studies suggest that type I IFNs regulate inflammation-induced preterm birth (PTB), but no study has examined the role of IFNε in human pregnancy.

Method Of Study: We used stored vaginal swabs between 8 and 26 weeks of gestation from the Global Alliance to Prevent Prematurity and Stillbirth (GAPPS) biobank and measured IFNε by enzyme-linked immunosorbent assay (ELISA).

View Article and Find Full Text PDF

Amazonian (Trichechus inunguis) and West Indian (Trichechus manatus) manatees are aquatic mammals vulnerable to extinction found in the Amazon basin and the coastal western Atlantic. Toll-like receptors (TLR) play a key role in recognizing pathogen-associated molecular patterns using leucine-rich repeats (LRRs). We described the diversity of TLR4 and TLR8 genes in these two species of manatee.

View Article and Find Full Text PDF

Natural killer (NK) cells play major roles in innate immunity against viruses and cancer. Natural killer receptors (NKR) expressed by NK cells recognize foreign- or self-ligands on infected and transformed cells as well as healthy cells. NKR genes are the most rapidly evolving loci in vertebrates, and it is generally difficult to detect orthologues in different taxa.

View Article and Find Full Text PDF

Immunoglobulins and T cell receptors (TCR) have obvious structural similarities as well as similar immunogenetic diversification and selection mechanisms. Nevertheless, the two receptor systems and the loci that encode them are distinct in humans and classical murine models, and the gene segments comprising each repertoire are mutually exclusive. Additionally, while both B and T cells employ recombination-activating genes (RAG) for primary diversification, immunoglobulins are afforded a supplementary set of activation-induced cytidine deaminase (AID)-mediated diversification tools.

View Article and Find Full Text PDF

High allelic polymorphism and association with disease susceptibility has made the genes encoding major histocompatibility complex (MHC) antigen presentation molecules in humans, domesticated animals, and wildlife species of wide interest to ecologists, evolutionary biologists, and health specialists. The often multifaceted polygenism and extreme polymorphism of this immunogenetic system have made it especially difficult to characterize in non-model species. Here we compare and contrast the workflows of traditional Sanger sequencing of plasmid-cloned amplicons to Pacific Biosciences SMRT circular consensus sequencing (CCS) in their ability to capture alleles of MHC class I in a wildlife species where characterization of these genes was absent.

View Article and Find Full Text PDF

Cartilaginous fish are located at a pivotal point in phylogeny where the adaptive immune system begins to resemble that of other, more-derived jawed vertebrates, including mammals. For this reason, sharks and other cartilaginous fish are ideal models for studying the natural history of immunity. Insights from such studies may include distinguishing the (evolutionarily conserved) fundamental aspects of adaptive immunity from the (more recent) accessory.

View Article and Find Full Text PDF

Lysozymes play a key role in innate immune response to bacterial pathogens, catalyzing the hydrolysis of the peptidoglycan layer of bacterial cell walls. In this study, the genes encoding the c-type (TmLyzc) and g-type (TmLyzg) lysozymes from Totoaba macdonaldi were cloned and characterized. The cDNA sequences of TmLyzg and TmLyzc were 582 and 432 bp, encoding polypeptides of 193 and 143 amino acids, respectively.

View Article and Find Full Text PDF

Alligators are crocodilians and among few species that endured the Cretaceous-Paleogene extinction event. With long life spans, low metabolic rates, unusual immunological characteristics, including strong antibacterial and antiviral ability, and cancer resistance, crocodilians may hold information for molecular pathways underlying such physiological traits. Peptidylarginine deiminases (PADs) are a group of calcium-activated enzymes that cause posttranslational protein deimination/citrullination in a range of target proteins contributing to protein moonlighting functions in health and disease.

View Article and Find Full Text PDF

In addition to canonical TCR and BCR, cartilaginous fish assemble noncanonical TCR that employ various B-cell components. For example, shark T cells associate alpha (TCR-α) or delta (TCR-δ) constant (C) regions with Ig heavy chain (H) variable (V) segments or TCR-associated Ig-like V (TAILV) segments to form chimeric IgV-TCR, and combine TCRδC with both Ig-like and TCR-like V segments to form the doubly rearranging NAR-TCR. Activation-induced (cytidine) deaminase-catalyzed somatic hypermutation (SHM), typically used for B-cell affinity maturation, also is used by TCR-α during selection in the shark thymus presumably to salvage failing receptors.

View Article and Find Full Text PDF

Synthetic molecules that mimic the function of natural enzymes or molecules have untapped potential for use in the next generation of drugs. Cyclic compounds that contain aromatic rings are macrocyclic cyclophanes, and when they coordinate iron ions are of particular interest due to their antioxidant and biomimetic properties. However, little is known about the molecular responses at the cellular level.

View Article and Find Full Text PDF

The bovine immune system is known for its unusual traits relating to immunoglobulin and antiviral responses. Peptidylarginine deiminases (PADs) are phylogenetically conserved enzymes that cause post-translational deimination, contributing to protein moonlighting in health and disease. PADs also regulate extracellular vesicle (EV) release, forming a critical part of cellular communication.

View Article and Find Full Text PDF

Peptidylarginine deiminases (PADs) are phylogenetically conserved calcium-dependent enzymes which post-translationally convert arginine into citrulline in target proteins in an irreversible manner, causing functional and structural changes in target proteins. Protein deimination causes generation of neo-epitopes, affects gene regulation and also allows for protein moonlighting. Furthermore, PADs have been found to be a phylogenetically conserved regulator for extracellular vesicle (EVs) release.

View Article and Find Full Text PDF

Ab diversity in most vertebrates results from the assortment of amino acid side chains on CDR loops formed through V(D)J recombination. Cows () have a low combinatorial diversity potential because of a small number of highly homologous V, D, and J gene segments. Despite this, a subset of the Ab repertoire (∼10%) contains exceptionally long CDR H chain (HC) 3 (H3) regions with a rich diversity of cysteines and disulfide-bonded loops that diversify through a single V-D-J recombination event followed by massive somatic hypermutation.

View Article and Find Full Text PDF

The loci encoding B and T cell Ag receptors are generally distinct in commonly studied mammals, with each receptor's gene segments limited to intralocus, chromosomal rearrangements. The nurse shark () represents the oldest vertebrate class, the cartilaginous fish, with adaptive immunity provided via Ig and TCR lineages, and is one species among a growing number of taxa employing Ig-TCRδ rearrangements that blend these distinct lineages. Analysis of the nurse shark Ig-TCRδ repertoire found that these rearrangements possess CDR3 characteristics highly similar to canonical TCRδ rearrangements.

View Article and Find Full Text PDF