In this work, we numerically investigate the diffraction management of longitudinal elastic waves propagating in a two-dimensional metallic phononic crystal. We demonstrate that this structure acts as an "ultrasonic lens", providing self-collimation or focusing effect at a certain distance from the crystal output. We implement this directional propagation in the design of a coupling device capable to control the directivity or focusing of ultrasonic waves propagation inside a target object.
View Article and Find Full Text PDFThis work envisages a detailed study of two-dimensional defect localization and reconstruction, using laser generated ultrasound and its application as a remotely controlled non-destructive testing method. As an alternative to full ultrasonic or full optical approaches, we propose a hybrid configuration where ultrasound is generated by impact of laser pulses, while the detection is done with conventional transducers. We implement this approach for defect reconstruction in metallic elements and show that it combines advantages of both photonic and ultrasonic devices, reducing the drawbacks of both methods.
View Article and Find Full Text PDFNondestructive testing of metallic objects that may contain embedded defects of different sizes is an important application in many industrial branches for quality control. Most of these techniques allow defect detection and its approximate localization, but few methods give enough information for its 3D reconstruction. Here we present a hybrid laser-transducer system that combines remote, laser-generated ultrasound excitation and noncontact ultrasonic transducer detection.
View Article and Find Full Text PDFLaser-generated ultrasound is a modern non-destructive testing technique. It has been investigated over recent years as an alternative to classical ultrasonic methods, mainly in industrial maintenance and quality control procedures. In this study, the detection and reconstruction of internal defects in a metallic sample is performed by means of a time-frequency analysis of ultrasonic waves generated by a laser-induced thermal mechanism.
View Article and Find Full Text PDFWe have investigated multiple scattering of light in a disordered system based on liquid crystals for a temperature-controllable random laser. Coherent backscattering measurements at several temperatures have been well fitted by the theoretical model deduced for a random collection of spherical point scatters based on a diffusion approximation. The transport mean free path exclusively depends on the diffusivity of the liquid crystalline phase of the hybrid scattering system.
View Article and Find Full Text PDFWe discuss the effect of second harmonic generation via the Čerenkov-like process in nonlinear bulk media and waveguides. We show that in both schemes the Čerenkov harmonic emission represents in fact a nonlinear Bragg diffraction process. It is therefore possible, for the first time, to describe the bulk and waveguide Čerenkov emission uniformly by considering the spatial modulation of the second-order nonlinear polarization.
View Article and Find Full Text PDFType I and type II second harmonic generation (SHG) of a beam transformed by the conical refraction phenomenon are presented. We show that, for type I, the second harmonic intensity pattern is a light ring with a point of null intensity while, for type II, the light ring possesses two dark regions. Taking into account the different two-photon processes involved in SHG, we have derived analytical expressions for the resulting transverse intensity patterns that are in good agreement with the experimental data.
View Article and Find Full Text PDFWe study Čerenkov-type second-harmonic generation in a two-dimensional quasi-periodically poled LiNbO3 crystal. We employ a new geometry of interaction to observe simultaneous emission of multi-directional nonlinear Čerenkov radiation with comparable intensities. This opens a way to control the angle of Čerenkov emission by tailoring the nonlinearity of the material, which is otherwise intrinsically defined by dielectric constants of the medium and their dispersion.
View Article and Find Full Text PDFWe investigate theoretically the Čerenkov-type second-harmonic generation in two-dimensional bulk nonlinear photonic crystal with longitudinal modulation of the χ((2)) nonlinearity. We show that in this scheme the Čerenkov radiation can be achieved simultaneously at multiple directions with comparable intensities. The angles of emission are controllable by the spatial modulation of the nonlinearity.
View Article and Find Full Text PDFWe study experimentally the process of the second harmonic generation by two noncollinear beams in quadratic nonlinear crystals with a disordered structure of ferroelectric domains. We show that the second-harmonic radiation is emitted in the form of two cones as well as in a plane representing the cross-correlation of the two fundamental pulses. We demonstrate the implementation of this parametric process for characterisation of femtosecond pulses, enabling the estimation of pulse width, chirp, and front tilt.
View Article and Find Full Text PDFWe study the second-harmonic (SH) parametric processes in unpoled crystals of Strontium Barium Niobate (SBN) with disordered structures of ferroelectric domains. Such crystals allow for the simultaneous phase matching of several second-order nonlinear processes. We analyze the polarization properties of these parametric processes using two types of generation schemes: quasi-collinear SH generation and transverse SH generation.
View Article and Find Full Text PDFWe theoretically predict and numerically demonstrate that narrow beams (of the width of few wavelengths) can be efficiently parametrically amplified in nonlinear photonic crystal (with chi((2)) nonlinearity) tuned to sub-diffractive (self-collimating) regimes. We derive relations and give analytic estimations for the efficiency of amplification.
View Article and Find Full Text PDFWe show that all the structural properties of periodic dielectric multilayers can be accurately determined by a combined measurement of the transmission as a function of the wavelength and of the reflection as a function of the angle of incidence when the wavelength of the incident light is fixed. This method is applied to determine the structural properties of two commercial dielectric mirrors, and the results obtained are compared with a measurement of the same structural parameters by use of another technique based on the more standard optical guiding method.
View Article and Find Full Text PDFA Fabry-Perot resonator filled with second-order nonlinear optical material is investigated. Attention is devoted to making the resonator act as a nonlinear mirror for ultralow-intensity light signals that can be switched by a control beam at the second-harmonic frequency. The interaction process is an input-phase-independent parametric downconversion.
View Article and Find Full Text PDF