Environ Sci Process Impacts
November 2024
Gas-phase reactive nitrogen species (N) are important drivers of indoor air quality. Cooking and cleaning are significant direct sources indoors, whose emissions will vary depending on activity and materials used. Commercial kitchens experience regular high volumes of both cooking and cleaning, making them ideal study locations for exploring emission factors from these sources.
View Article and Find Full Text PDFEnhanced photolysis of particulate nitrate (pNO) to form photolabile species, such as gas-phase nitrous acid (HONO), has been proposed as a potential mechanism to recycle nitrogen oxides (NO) in the remote boundary layer ("renoxification"). This article presents a series of laboratory experiments aimed at investigating the parameters that control the photolysis of pNO and the efficiency of HONO production. Filters on which artificial or ambient particles had been sampled were exposed to the light of a solar simulator, and the formation of HONO was monitored under controlled laboratory conditions.
View Article and Find Full Text PDFEnviron Sci Technol
October 2023
Unsaturated triglycerides found in food and skin oils are reactive in ambient air. However, the chemical fate of such compounds has not been well characterized in genuine indoor environments. Here, we monitored the aging of oil coatings on glass surfaces over a range of environmental conditions, using mass spectrometry, nuclear magnetic resonance (NMR), and electron paramagnetic resonance (EPR) techniques.
View Article and Find Full Text PDFDelhi, India, suffers from periods of very poor air quality, but little is known about the chemical production of secondary pollutants in this highly polluted environment. During the postmonsoon period in 2018, extremely high nighttime concentrations of NO (NO and NO) and volatile organic compounds (VOCs) were observed, with median NO mixing ratios of ∼200 ppbV (maximum of ∼700 ppbV). A detailed chemical box model constrained to a comprehensive suite of speciated VOC and NO measurements revealed very low nighttime concentrations of oxidants, NO, O, and OH, driven by high nighttime NO concentrations.
View Article and Find Full Text PDFGas and particulate emissions from commercial kitchens are important contributors to urban air quality. Not only are these emissions important for occupational exposure of kitchen staff, but they can also be vented to outdoors, causing uncertain health and environmental impacts. In this study, we chemically speciated volatile organic compounds and measured particulate matter mass concentrations in a well-ventilated commercial kitchen for two weeks, including during typical cooking and cleaning operations.
View Article and Find Full Text PDFReactive nitrogen species (N), defined here as all N-containing compounds except N and NO, have been shown to be important drivers for indoor air quality. Key N species include NO (NO + NO), HONO and NH, which are known to have detrimental health effects. In addition, other N species that are not traditionally measured may be important chemical actors for indoor transformations ( amines).
View Article and Find Full Text PDFParticulate nitrate ([Formula: see text]) has long been considered a permanent sink for NO (NO and NO), removing a gaseous pollutant that is central to air quality and that influences the global self-cleansing capacity of the atmosphere. Evidence is emerging that photolysis of [Formula: see text] can recycle HONO and NO back to the gas phase with potentially important implications for tropospheric ozone and OH budgets; however, there are substantial discrepancies in "renoxification" photolysis rate constants. Using aircraft and ground-based HONO observations in the remote Atlantic troposphere, we show evidence for renoxification occurring on mixed marine aerosols with an efficiency that increases with relative humidity and decreases with the concentration of [Formula: see text], thus largely reconciling the very large discrepancies in renoxification photolysis rate constants found across multiple laboratory and field studies.
View Article and Find Full Text PDFEnviron Sci Process Impacts
February 2023
Chloramines (NHCl, NHCl, and NCl) are toxic compounds that can be created during the use of bleach-based disinfectants that contain hypochlorous acid (HOCl) and the hypochlorite ion (OCl) as their active ingredients. Chloramines can then readily transfer from the aqueous-phase to the gas-phase. Atmospheric chemical ionization mass spectrometry using iodide adduct chemistry (I-CIMS) made observations across two periods (2014 and 2016) at an urban background site on the University of Leicester campus (Leicester, UK).
View Article and Find Full Text PDFEnviron Sci Process Impacts
November 2021
Indian cities can experience severe air pollution, and the reduction in activity during the first national COVID-19 lockdown (2020) offered a natural experiment to study the contribution of local sources. The current work aimed to quantify the changes due to the lockdown in NO, O and PM in two contrasting cities in India (Delhi and Hyderabad) using a boosted regression tree model to account for the influence of meteorology. The median NO and PM concentrations were observed to decrease after lockdown in both cities, up to 57% and 75% for PM and NO, respectively when compared to previous years.
View Article and Find Full Text PDFPeople spend up to 90% of their time indoors, and yet our understanding of indoor air quality and the chemical processes driving it are poorly understood, despite levels of key pollutants typically being higher indoors compared to outdoors. Nitrous acid (HONO) is a species that drives these indoor chemical processes, with potentially detrimental health effects. In this work, a BODIPY-based probe was synthesized with the aim of developing the first selective passive sampler for atmospheric HONO.
View Article and Find Full Text PDFIncreasing emissions from sources such as construction and burning of biomass from crop residues, roadside and municipal solid waste have led to a rapid increase in the atmospheric concentrations of fine particulate matter (≤2.5 μm; PM) over many Indian cities. Analyses of their chemical profiles are important for receptor models to accurately estimate the contributions from different sources.
View Article and Find Full Text PDFWintertime urban air pollution in many global megacities is characterised by episodic rapid increase in particulate matter concentrations associated with elevated relative humidity - so-called haze episodes, which have become characteristic of cities such as Beijing. Atmospheric chemistry within haze combines gas- and condensed-phase chemical processes, leading to the growth in secondary species such as sulphate aerosols. Here, we integrate observations of reactive gas phase species (HONO, OH, NO) and time-resolved aerosol composition, to explore observational constraints on the mechanisms responsible for sulphate growth during the onset of haze events.
View Article and Find Full Text PDFDespite much work in recent years, vehicle emissions remain a significant contributor in many areas where air quality standards are under threat. Policy-makers are actively exploring options for next generation vehicle emission control and local fleet management policies, and new monitoring technologies to aid these activities. Therefore, we report here on findings from two separate but complementary blind evaluation studies of one new-to-market real-world monitoring option, HEAT LLC's Emission Detection And Reporting system or EDAR, an above-road open path instrument that uses Differential Absorption LIDAR to provide a highly sensitive and selective measure of passing vehicle emissions.
View Article and Find Full Text PDFLondon, like many major cities, has a noted air pollution problem, and a better understanding of the sources of airborne particles in the different size fractions will facilitate the implementation and effectiveness of control strategies to reduce air pollution. Thus, the trace elemental composition of the fine and coarse fraction were analysed at hourly time resolution at urban background (North Kensington, NK) and roadside (Marylebone Road, MR) sites within central London. Unlike previous work, the current study focuses on measurements during the summer providing a snapshot of contributing sources, utilising the high time resolution to improve source identification.
View Article and Find Full Text PDFA substantial body of recent literature has shown that boundary layer HONO levels are higher than can be explained by simple, established gas-phase chemistry, to an extent that implies that additional HONO sources represent a major, or the dominant, precursor to OH radicals in such environments. This conclusion may be reached by analysis of point observations of (for example) OH, NO and HONO, alongside photochemical parameters; however both NO and HONO have non-negligible atmospheric lifetimes, so these approaches may be problematic if substantial spatial heterogeneity exists. We report a new dataset of HONO, NOx and HOx observations recorded at an urban background location, which support the existence of additional HONO sources as determined elsewhere.
View Article and Find Full Text PDFAmbient ultrafine particle number concentrations (PNC) have inhomogeneous spatio-temporal distributions and depend on a number of different urban factors, including background conditions and distant sources. This paper quantitatively compares exposure to ambient ultrafine particles at urban schools in two cities in developed countries, with high insolation climatic conditions, namely Brisbane (Australia) and Barcelona (Spain). The analysis used comprehensive indoor and outdoor air quality measurements at 25 schools in Brisbane and 39 schools in Barcelona.
View Article and Find Full Text PDFThis comprehensive study aimed to determine the sources and driving factors of organic carbon (OC) and elemental carbon (EC) concentrations in ambient PM2.5 in urban schools. Sampling was conducted outdoors at 25 schools in the Brisbane Metropolitan Area, Australia.
View Article and Find Full Text PDFThe charge and chemical composition of ambient particles in an urban environment were determined using a neutral particle and air ion spectrometer and an aerodyne compact time-of-flight aerosol mass spectrometer. Particle formation and growth events were observed on 20 of the 36 days of sampling, with eight of these events classified as strong. During these events, peaks in the concentration of intermediate and large ions were followed by peaks in the concentration of ammonium and sulfate, which were not observed in the organic fraction.
View Article and Find Full Text PDFChildren are particularly susceptible to air pollution and schools are examples of urban microenvironments that can account for a large portion of children's exposure to airborne particles. Thus this paper aimed to determine the sources of primary airborne particles that children are exposed to at school by analyzing selected organic molecular markers at 11 urban schools in Brisbane, Australia. Positive matrix factorization analysis identified four sources at the schools: vehicle emissions, biomass burning, meat cooking and plant wax emissions accounting for 45%, 29%, 16% and 7%, of the organic carbon respectively.
View Article and Find Full Text PDFIn January 2011, Brisbane, Australia, experienced a major river flooding event. We aimed to investigate its effects on air quality and assess the role of prompt cleaning activities in reducing the airborne exposure risk. A comprehensive, multi-parameter indoor and outdoor measurement campaign was conducted in 41 residential houses, 2 and 6 months after the flood.
View Article and Find Full Text PDFAerosol Mass Spectrometers (AMS) are powerful tools in the analysis of the chemical composition of airborne particles, particularly organic aerosols which are gaining increasing attention. However, the advantages of AMS in providing on-line data can be outweighed by the difficulties involved in its use in field measurements at multiple sites. In contrast to the on-line measurement by AMS, a method which involves sample collection on filters followed by subsequent analysis by AMS could significantly broaden the scope of AMS application.
View Article and Find Full Text PDFAn Aerodyne Aerosol Mass Spectrometer was deployed at five urban schools to examine spatial and temporal variability of organic aerosols (OA) and positive matrix factorization (PMF) used for the first time in the Southern Hemisphere to apportion the sources of the OA across an urban area. The sources identified included hydrocarbon-like OA (HOA), biomass burning OA (BBOA) and oxygenated OA (OOA). At all sites, the main source was OOA, which accounted for 62-73% of the total OA mass and was generally more oxidized compared to those reported in the Northern Hemisphere.
View Article and Find Full Text PDFLong-term exposure to vehicle emissions has been associated with detrimental health effects. Children are amongst the most susceptible group and schools represent an environment where they can experience significant exposure to vehicle emissions. However, there are limited studies on children's exposure to vehicle emissions in schools.
View Article and Find Full Text PDF