Publications by authors named "Crevecoeur M"

In photosynthetic eukaryotes, thousands of proteins are translated in the cytosol and imported into the chloroplast through the concerted action of two translocons-termed TOC and TIC-located in the outer and inner membranes of the chloroplast envelope, respectively. The degree to which the molecular composition of the TOC and TIC complexes is conserved over phylogenetic distances has remained controversial. Here, we combine transcriptomic, biochemical, and genetic tools in the green alga Chlamydomonas () to demonstrate that, despite a lack of evident sequence conservation for some of its components, the algal TIC complex mirrors the molecular composition of a TIC complex from The Chlamydomonas TIC complex contains three nuclear-encoded subunits, Tic20, Tic56, and Tic100, and one chloroplast-encoded subunit, Tic214, and interacts with the TOC complex, as well as with several uncharacterized proteins to form a stable supercomplex (TIC-TOC), indicating that protein import across both envelope membranes is mechanistically coupled.

View Article and Find Full Text PDF

Symbiotic nitrogen fixation between legumes and rhizobia involves a coordinated expression of many plant and bacterial genes as well as finely tuned metabolic activities of micro- and macrosymbionts. In spite of such complex interactions, symbiotic proficiency remains a resilient process, with host plants apparently capable of compensating for some deficiencies in rhizobia. What controls nodule homeostasis is still poorly understood and probably varies between plant species.

View Article and Find Full Text PDF

Thiamine (vitamin B1) is ubiquitous and essential for cell energy supply in all organisms as a vital metabolic cofactor, known for over a century. In plants, it is established that biosynthesis de novo is taking place predominantly in green tissues and is furthermore limited to plastids. Therefore, transport mechanisms are required to mediate the movement of this polar metabolite from source to sink tissue to activate key enzymes in cellular energy generating pathways but are currently unknown.

View Article and Find Full Text PDF

Background And Aims: Sexual dimorphism, at both the flower and plant level, is widespread in the palm family (Arecaceae), in contrast to the situation in angiosperms as a whole. The tribe Chamaedoreeae is of special interest for studies of the evolution of sexual expression since dioecy appears to have evolved independently twice in this group from a monoecious ancestor. In order to understand the underlying evolutionary pathways, it is important to obtain detailed information on flower structure and development in each of the main clades.

View Article and Find Full Text PDF

Plastid protein homeostasis is critical during chloroplast biogenesis and responses to changes in environmental conditions. Proteases and molecular chaperones involved in plastid protein quality control are encoded by the nucleus except for the catalytic subunit of ClpP, an evolutionarily conserved serine protease. Unlike its Escherichia coli ortholog, this chloroplast protease is essential for cell viability.

View Article and Find Full Text PDF

Background: Postoperative peritonitis (PP) is associated with a high rate of multi-drug-resistant micro-organisms. The role of Pseudomonas aeruginosa in this condition has never been assessed. We evaluated the risk factors and prognosis for PP caused by P.

View Article and Find Full Text PDF

Aquaporins (AQPs) belong to the Major Intrinsic Protein family that conducts water and other small solutes across biological membranes. This study aimed to identify and characterize AQP genes in the primary root axis of two oak species, Quercus petraea and Quercus robur. Nine putative AQP genes were cloned, and their expression was profiled in different developmental root zones by real-time PCR.

View Article and Find Full Text PDF

Cupriavidus taiwanensis forms proficient symbioses with a few Mimosa species. Inactivation of a type III protein secretion system (T3SS) had no effect on Mimosa pudica but allowed C. taiwanensis to establish chronic infections and fix nitrogen in Leucaena leucocephala.

View Article and Find Full Text PDF

Reversible protein phosphorylation plays a major role in the acclimation of the photosynthetic apparatus to changes in light. Two paralogous kinases phosphorylate subsets of thylakoid membrane proteins. STATE TRANSITION7 (STN7) phosphorylates LHCII, the light-harvesting antenna of photosystem II (PSII), to balance the activity of the two photosystems through state transitions.

View Article and Find Full Text PDF

Soil flooding is an environmental constraint that is increasingly important for forest ecosystems, affecting tree growth and regeneration. As a result, selection pressure will alter forest diversity and distribution by favouring tree species tolerant of soil oxygen deprivation. Sessile and pedunculate oaks are the most abundant oak species and they exhibit a strong differential tolerance to waterlogging.

View Article and Find Full Text PDF

Vitamin B₆ is an essential nutrient in the human diet derived primarily from plant sources. While it is well established as a cofactor for numerous metabolic enzymes, more recently, vitamin B₆ has been implicated as a potent antioxidant. The de novo vitamin B₆ biosynthesis pathway in plants has recently been unraveled and involves only two proteins, PDX1 and PDX2.

View Article and Find Full Text PDF

Photosynthetic thylakoid membranes in plants contain highly folded membrane layers enriched in photosystem II, which uses light energy to oxidize water and produce oxygen. The sunlight also causes quantitative phosphorylation of major photosystem II proteins. Analysis of the Arabidopsis thaliana stn7xstn8 double mutant deficient in thylakoid protein kinases STN7 and STN8 revealed light-independent phosphorylation of PsbH protein and greatly reduced N-terminal phosphorylation of D2 protein.

View Article and Find Full Text PDF

The cellular and molecular adaptations of non-model woody species to environmental changes are still poorly understood. We have cloned and characterised a novel non-symbiotic hemoglobin from oak roots (QpHb1) which exhibits a specific cellular distribution in the root. The QpHb1 gene is strongly expressed in the protoderm and the protoxylem cells in two Quercus species (Q.

View Article and Find Full Text PDF
Article Synopsis
  • Lotus japonicus is a model legume that forms a beneficial nitrogen-fixing relationship with Mesorhizobium loti, enhancing plant health.
  • Nodules formed by Rhizobium etli degenerate quickly, negatively impacting plant growth, while those formed by NGR234 persist and are initially less efficient in nitrogen fixation.
  • NGR234's nodules eventually develop into efficient structures similar to those formed by M. loti, providing a valuable opportunity to research symbiotic processes between rhizobia and legumes using available mutant strains.
View Article and Find Full Text PDF

This study presents the isolation and characterization of a novel nonsymbiotic Hb gene from sessile oak (Quercus petraea) seedlings, herein designated QpHb1. The cellular and tissue expression of QpHb1 was analysed by Northern blotting and in situ hybridization. The encoded protein was predicted to consist of 161 amino acid residues, and shares 71 and 51% amino acid sequence identity with the Arabidopsis class 1 and 2 nonsymbiotic Hb, respectively.

View Article and Find Full Text PDF

The respective distribution of superoxide (O(2) (.-)) and hydrogen peroxide (H(2)O(2)), two reactive oxygen species (ROS) involved in root growth and differentiation, was determined within the Arabidopsis root tip. We investigated the effect of changing the levels of these ROS on root development and the possible interactions with peroxidases.

View Article and Find Full Text PDF

Plastid translational control depends to a large extent on the light conditions, and is presumably mediated by nucleus-encoded proteins acting on organelle gene expression. However, the molecular mechanisms of light signalling involved in translation are still poorly understood. We investigated the role of the Arabidopsis ortholog of Tab2, a nuclear gene specifically required for translation of the PsaB photosystem I subunit in the unicellular alga Chlamydomonas.

View Article and Find Full Text PDF

Proteins of the YidC/Oxa1p/ALB3 family play an important role in inserting proteins into membranes of mitochondria, bacteria, and chloroplasts. In Chlamydomonas reinhardtii, one member of this family, Albino3.1 (Alb3.

View Article and Find Full Text PDF

Cells from a green normal (dependent on exogenous hormones) callus and from an achlorophyllous fully habituated (independent from exogenous hormones) callus, both generated from the same sugarbeet strain more than twenty years ago, were reexamined cytologically, ten years after the first comparative description. Cells from the habituated callus, already considered as neoplastic cells, because terminating a neoplastic progression where the organogenic totipotency was lost, still showed nuclear invaginations, polynucleolation, vacuolation of nucleoli and incomplete cell walls, nevertheless at a higher degree. The present study particularly shows that, compared to their previous description, normal cells have started to acquire some features (polynucleolation, nuclear invaginations.

View Article and Find Full Text PDF

An apoplastic isoperoxidase from zucchini (APRX) was shown to bind strongly to polygalacturonic acid in their Ca(2)+-induced conformation. By homology modeling, we were able to identify a motif of four clustered arginines (positions 117, 262, 268, and 271) that could be responsible for this binding. To verify the role of these arginine residues in the binding process, we prepared three mutants of APRX (M1, R117S; M2, R262Q/R268S; and M3, R262Q/R268S/R271Q).

View Article and Find Full Text PDF

Heterotrimeric G proteins are an important component of signal transduction pathway in animals. Although these proteins have been described in plants, their exact function and action mode are not clearly defined. In order to analyze the relationship between these proteins and the transduction of light signals in spinach, we have isolated by 5' and 3' RACE-PCR a 1660bp cDNA clone called SOGA1.

View Article and Find Full Text PDF

A calcium-pectate-binding anionic isoperoxidase (APRX) from zucchini (Cucurbita pepo) was purified and subjected to N-terminal amino acid microsequencing. The cDNA encoding this enzyme was obtained by reverse transcriptase polymerase chain reaction from a cDNA library. It encoded a mature protein of 309 amino acids exhibiting all of the sequence characteristics of a plant peroxidase.

View Article and Find Full Text PDF

An axillary proliferating clone of Prunus avium L. was subcultured every four weeks on solid MS medium with agar as the gelling agent. Vitrification (hyperhydricity) of shoots was induced in one four week cycle with the same medium except that agar was replaced by gelrite.

View Article and Find Full Text PDF

Mechanical stimulation exerted by rubbing a young internode of Bryonia dioica plants inhibits its growth. Previous cellular and biochemical studies showed that this growth inhibition is associated with Ca(2+) redistribution and profound modifications of plasma membrane characteristics. We extracted and purified Ca(2+)-dependent phospholipid-binding proteins from B.

View Article and Find Full Text PDF

Peroxidase activity was localized in the shoot apical meristem (SAM) of Spinacia at the light and electron microscope level with the histochemical method employing H2O2 and 3,3'-diaminobenzidine. At the light microscopic level, peroxidase activity was examined in unfixed cryostat sections at different pHs. The enzyme was found to be more intense at low than at neutral and high pH.

View Article and Find Full Text PDF