Publications by authors named "Crevecoeur F"

When making perceptual decisions, humans combine information across sensory modalities dependent on their respective uncertainties. However, it remains unknown how the brain integrates multisensory feedback during movement and which factors besides sensory uncertainty influence sensory contributions. We performed two reaching experiments on healthy adults to investigate whether movement corrections to combined visual and mechanical perturbations scale with visual uncertainty.

View Article and Find Full Text PDF
Article Synopsis
  • Everyday activities often combine individual actions into sequences, traditionally thought to be managed by a single motor command as proposed by classical theories.
  • Recent studies indicate that elements of these sequences may be executed independently, suggesting that both separate and coarticulated sequences can arise from the same underlying control system depending on task instructions.
  • Our human experiments in a two-reach sequence task support this model, showing that feedback mechanisms play a crucial role in coordinating actions, particularly in how the second action responds to the first under different conditions.
View Article and Find Full Text PDF

Essential tremor (ET), a movement disorder characterized by involuntary oscillations of the limbs during movement, remains to date not well understood. It has been recently suggested that the tremor originates from impaired delay compensation, affecting movement representation and online control. Here we tested this hypothesis directly with 24 ET patients (14 female; 10 male) and 28 neurologically intact (NI) human volunteers (17 female; 11 male) in an upper limb postural perturbation task.

View Article and Find Full Text PDF

During object manipulation, humans adjust the grip force to friction, such that slippery objects are squeezed more firmly than sticky ones. This essential mechanism to keep a stable grasp relies on feedback from tactile afferents innervating the fingertips, that are sensitive to local skin strains. To test if this feedback originates from the skin-object interface, we asked participants to perform a grip-lift task with an instrumented object able to monitor skin strains at the contact through transparent plates of different frictions.

View Article and Find Full Text PDF

Background: In the recent past, wearable devices have been used for gait rehabilitation in patients with Parkinson's disease. The objective of this paper is to analyze the outcome of a wearable hip orthosis whose assistance adapts in real time to the patient's gait kinematics via adaptive oscillators. In particular, this study focuses on a metric characterizing natural gait variability, i.

View Article and Find Full Text PDF

Closed-loop models of movement control have attracted growing interest in how the nervous system transforms sensory information into motor commands, and several brain structures have been identified as neural substrates for these computational operations. Recently, several studies have focused on how these models need to be updated when environmental parameters change. Current evidence suggests that when the task changes, rapid control updates enable flexible modifications of current actions and online decisions.

View Article and Find Full Text PDF

Essential tremor (ET) is a neurological disorder characterized by involuntary oscillations of the limbs. Previous studies have hypothesized that ET is a cerebellar disorder and reported impairments in motor adaptation. However, recent advances have highlighted that motor adaptation involves several components linked to anticipation and control, all dependent on cerebellum.

View Article and Find Full Text PDF

Humans consider the parameters linked to movement goal during reaching to adjust their control strategy online. Indeed, rapid changes in target structure or disturbances interfering with their initial plan elicit rapid changes in behavior. Here, we hypothesize that these changes could result from the continuous use of a decision variable combining motor and cognitive components.

View Article and Find Full Text PDF

Previous research has questioned whether motor adaptation is shaped by an optimal combination of multisensory error signals. Here, we expanded on this work by investigating how the use of visual and somatosensory error signals during online correction influences single-trial adaptation. To this end, we exposed participants to a random sequence of force-field perturbations and recorded their corrective responses as well as the after-effects exhibited during the subsequent unperturbed movement.

View Article and Find Full Text PDF

Gait variability of healthy adults exhibits Long-Range Autocorrelations (LRA), meaning that the stride interval at any time statistically depends on previous gait cycles; and this dependency spans over several hundreds of strides. Previous works have shown that this property is altered in patients with Parkinson's disease, such that their gait pattern corresponds to a more random process. Here, we adapted a model of gait control to interpret the reduction in LRA that characterized patients in a computational framework.

View Article and Find Full Text PDF

Humans exhibit lateralization such that most individuals typically show a preference for using one arm over the other for a range of movement tasks. The computational aspects of movement control leading to these differences in skill are not yet understood. It has been hypothesized that the dominant and nondominant arms differ in terms of the use of predictive or impedance control mechanisms.

View Article and Find Full Text PDF

Judging by the breadth of our motor repertoire during daily activities, it is clear that learning different tasks is a hallmark of the human motor system. However, for reaching adaptation to different force fields, the conditions under which this is possible in laboratory settings have remained a challenging question. Previous work has shown that independent movement representations or goals enabled dual adaptation.

View Article and Find Full Text PDF

A hallmark of human reaching movements is that they are appropriately tuned to the task goal and to the environmental context. This was demonstrated by the way humans flexibly respond to mechanical and visual perturbations that happen during movement. Furthermore, it was previously showed that the properties of goal-directed control can change within a movement, following abrupt changes in the goal structure.

View Article and Find Full Text PDF

Target reward influences motor planning strategies through modulation of movement vigor. Considering current theories of sensorimotor control suggesting that movement planning consists in selecting a goal-directed control strategy, we sought to investigate the influence of reward on feedback control. Here, we explored this question in three human reaching experiments.

View Article and Find Full Text PDF

Sensorimotor adaptation is a central function of the nervous system, as it allows humans and other animals to flexibly anticipate their interaction with the environment. In the context of human reaching adaptation to force fields, studies have traditionally separated feedforward (FF) and feedback (FB) processes involved in the improvement of behavior. Here, we review computational models of FF adaptation to force fields and discuss them in light of recent evidence highlighting a clear involvement of feedback control.

View Article and Find Full Text PDF

Visual and proprioceptive feedback both contribute to perceptual decisions, but it remains unknown how these feedback signals are integrated together or consider factors such as delays and variance during online control. We investigated this question by having participants reach to a target with randomly applied mechanical and/or visual disturbances. We observed that the presence of visual feedback during a mechanical disturbance did not increase the size of the muscle response significantly but did decrease variance, consistent with a dynamic Bayesian integration model.

View Article and Find Full Text PDF

Savings have been described as the ability of healthy humans to relearn a previously acquired motor skill faster than the first time, which in the context of motor adaptation suggests that the learning rate in the brain could be adjusted when a perturbation is recognized. Alternatively, it has been argued that apparent savings were the consequence of a distinct process that instead of reflecting a change in the learning rate, revealed an explicit re-aiming strategy. Based on recent evidence that feedback adaptation may be central to both planning and control, we hypothesized that this component could genuinely accelerate relearning in human adaptation to force fields (FFs) during reaching.

View Article and Find Full Text PDF

Besides relying heavily on sensory and reinforcement feedback, motor skill learning may also depend on the level of motivation experienced during training. Yet, how motivation by reward modulates motor learning remains unclear. In 90 healthy subjects, we investigated the net effect of motivation by reward on motor learning while controlling for the sensory and reinforcement feedback received by the participants.

View Article and Find Full Text PDF

Describing how the brain anatomical wiring contributes to the emergence of coordinated neural activity underlying complex behavior remains challenging. Indeed, patterns of remote coactivations that adjust with the ongoing task-demand do not systematically match direct, static anatomical links. Here, we propose that observed coactivation patterns, known as functional connectivity (FC), can be explained by a controllable linear diffusion dynamics defined on the brain architecture.

View Article and Find Full Text PDF

Functional connectivity quantifies the statistical dependencies between the activity of brain regions, measured using neuroimaging data such as functional magnetic resonance imaging (fMRI) blood-oxygenation-level dependent time series. The network representation of functional connectivity, called a functional connectome (FC), has been shown to contain an individual fingerprint allowing participants identification across consecutive testing sessions. Recently, researchers have focused on the extraction of these fingerprints, with potential applications in personalized medicine.

View Article and Find Full Text PDF

Humans are able to perform very sophisticated reaching movements in a myriad of contexts based on flexible control strategies influenced by the task goal and environmental constraints such as obstacles. However, it remains unknown whether these control strategies can be adjusted online. The objective of this study was to determine whether the factors that determine control strategies during planning also modify the execution of an ongoing movement following sudden changes in task demand.

View Article and Find Full Text PDF

In humans, practically all movements are learnt and performed in a constant gravitational field. Yet, studies on arm movements and object manipulation in parabolic flight have highlighted very fast sensorimotor adaptations to altered gravity environments. Here, we wondered if the motor adjustments observed in those altered gravity environments could also be observed on Earth in a situation where the body is upside-down.

View Article and Find Full Text PDF

Perception of limb position and motion combines sensory information from spindles in muscles that span one joint (monoarticulars) and two joints (biarticulars). This anatomical organization should create interactions in estimating limb position. We developed two models, one with only monoarticulars and one with both monoarticulars and biarticulars, to explore how biarticulars influence estimates of arm position in hand (, ) and joint () coordinates.

View Article and Find Full Text PDF

Saccades are often directed toward a stimulus that provides useful information for observers to navigate the visual world. The quality of visual signals of a stimulus is influenced by global luminance, and the pupil constricts or dilates after a luminance increase or decrease, respectively, to optimize visual signals for further information processing. Although luminance level changes regularly in the real environment, saccades are mostly studied in the luminance-unchanged setup.

View Article and Find Full Text PDF