Publications by authors named "Creuzenet C"

Campylobacter jejuni is a commensal in many animals but causes diarrhea in humans. Its polysaccharide capsule contributes to host colonization and virulence in a strain- and model-specific manner. We investigated if the capsule and its heptose are important for interactions of strain NCTC 11168 with various hosts and their innate immune defenses.

View Article and Find Full Text PDF

is a prevalent bacterium that can cause gastric ulcers and cancers. Lactic acid bacteria (LAB) ameliorate treatment outcomes against suggesting that they could be a source of bioactive molecules usable as alternatives to current antibiotics for which resistance is mounting. We developed an in vitro framework to compare the anti- properties of 25 LAB and their secretions against .

View Article and Find Full Text PDF

Many bacteria produce polysaccharide-based capsules that protect them from environmental insults and play a role in virulence, host invasion, and other functions. Understanding how the polysaccharide components are synthesized could provide new means to combat bacterial infections. We have previously characterized two pairs of homologous enzymes involved in the biosynthesis of capsular sugar precursors GDP-6-deoxy-D-altro-heptose and GDP-6-OMe-L-gluco-heptose in Campylobacter jejuni.

View Article and Find Full Text PDF
Article Synopsis
  • The text discusses a genus of Gram-negative bacteria found in the rhizosphere that can cause serious human infections, necessitating clinical efforts focused on specific lipopolysaccharide proteins.
  • Researchers used various methods, including bioinformatics and molecular analyses, to identify a gene cluster crucial for the synthesis and structure of a lipid-linked glycan, which is important for the bacteria's survival.
  • The study concludes that protein glycosylation is vital for bacterial fitness and offers potential avenues for developing treatments or immune therapies against infections caused by this genus.
View Article and Find Full Text PDF

The donor substrates for the biosynthesis of bacterial polysaccharides include UDP-Glc/Gal and UDP-GlcNAc/GalNAc. The conversion of these nucleotide sugars is catalyzed by 4-epimerases. The wbpP gene of Pseudomonas aeruginosa encodes a 4-epimerase that has a preference for UDP-GlcNAc/GalNAc as substrates.

View Article and Find Full Text PDF

Campylobacter jejuni is the leading cause of bacterial gastroenteritis. It relies on several virulence factors for host colonization, including glycosylated flagella. C.

View Article and Find Full Text PDF

The Campylobacter jejuni capsular polysaccharide is important for virulence and often contains a modified heptose. In strain ATCC 700819 (a.k.

View Article and Find Full Text PDF

Helicobacter pylori is a human gastric pathogen that colonizes ∼ 50% of the world's population. It can cause gastritis, gastric or duodenal ulcers and also gastric cancer. The numerous side effects of available treatments and the emergence of antibiotic resistant strains are severe concerns that justify further research into H.

View Article and Find Full Text PDF

The cell wall of Aspergillus fumigatus contains two galactose-containing polysaccharides, galactomannan and galactosaminogalactan, whose biosynthetic pathways are not well understood. The A. fumigatus genome contains three genes encoding putative UDP-glucose 4-epimerases, uge3, uge4, and uge5.

View Article and Find Full Text PDF

Uniquely modified heptoses found in surface carbohydrates of bacterial pathogens are potential therapeutic targets against such pathogens. Our recent biochemical characterization of the GDP-6-deoxy-D-manno- and GDP-6-deoxy-D-altro-heptose biosynthesis pathways has provided the foundation for elucidation of the more complex L-gluco-heptose synthesis pathway of Campylobacter jejuni strain NCTC 11168. In this work we use GDP-4-keto,6-deoxy-D-lyxo-heptose as a surrogate substrate to characterize three enzymes predicted to be involved in this pathway: WcaGNCTC (also known as Cj1427), MlghB (Cj1430), and MlghC (Cj1428).

View Article and Find Full Text PDF

Background: Campylobacter jejuni is a major cause of bacterial food-borne illness in Europe and North America. The mechanisms allowing survival in the environment and transmission to new hosts are not well understood. Environmental free-living protozoa may facilitate both processes.

View Article and Find Full Text PDF

The Campylobacter jejuni capsule is important for colonization and virulence in various infection models. In most strains, the capsule includes a modified heptose whose biological role and biosynthetic pathway are unknown. To decipher the biosynthesis pathway for the 6-deoxy-D-altro-heptose of strain 81-176, we previously showed that the 4,6-dehydratase WcbK and the reductase WcaG generated GDP-6-deoxy-D-manno-heptose, but the C3 epimerase necessary to form GDP-6-deoxy-D-altro-heptose was not identified.

View Article and Find Full Text PDF

Campylobacter jejuni is a major cause of infectious diarrhoea worldwide but relatively little is known about its ecology. In this study, we examined its interactions with Acanthamoeba castellanii, a protozoan suspected to serve as a reservoir for bacterial pathogens. We observed rapid degradation of intracellular C.

View Article and Find Full Text PDF

Glycosylation of flagellins by pseudaminic acid is required for virulence in Helicobacter pylori. We demonstrate that, in H. pylori, glycosylation extends to proteins other than flagellins and to sugars other than pseudaminic acid.

View Article and Find Full Text PDF

The capsule of Campylobacter jejuni strain 81-176 comprises the unusual 6-deoxy-α-D-altro-heptose, whose biosynthesis and function are not known. In the present study, we characterized enzymes of the capsular cluster, WcbK and WcaG, to determine their role in 6-deoxy-altro-heptose synthesis. These enzymes are similar to the Yersinia pseudotuberculosis GDP-manno-heptose dehydratase/reductase DmhA/DmhB that we characterized previously.

View Article and Find Full Text PDF

6-Deoxyheptose is found within the surface polysaccharides of several bacterial pathogens. In Yersinia pseudotuberculosis, it is important for the barrier function of the O-antigen in vitro and for bacterial dissemination in vivo. The putative C6 dehydratase DmhA and C4 reductase DmhB, that were identified as responsible for 6-deoxyheptose synthesis based on genetics data, represent potential therapeutical targets.

View Article and Find Full Text PDF

Campylobacter jejuni produces both N- and O-glycosylated proteins. Because protein glycosylation contributes to bacterial virulence, a thorough characterization of the enzymes involved in protein glycosylation is warranted to assess their potential use as therapeutic targets and as glyco-engineering tools. We performed a detailed biochemical analysis of the molecular determinants of the substrate and acyl-donor specificities of Cj1123c (also known as PglD), an acetyltransferase of the HexAT superfamily involved in N-glycosylation of proteins.

View Article and Find Full Text PDF

The full structure of the long- and short-chain O-antigen of Yersinia pseudotuberculosis O:2a containing two uncommon deoxy sugars, abequose and 6-deoxy-d-manno-heptose (6dmanHep), was established, for the first time, by sugar analysis, NMR spectroscopy, and high-resolution ESIMS. Similar structural studies were also performed on two O:2a mutants with single disruption of 6dmanHep synthesis pathway genes each, which synthesize modified long-chain (dmhA mutant) and short-chain (both dmhA and dmhB mutants) O-antigens with 6dmanHep replaced by its putative biosynthetic precursor, D-glycero-D-manno-heptose.

View Article and Find Full Text PDF

Yersinia pseudotuberculosis O:2a harbours 6-deoxy-d-manno-heptose in its O-antigen. The biological function of 6-deoxyheptose and its role in virulence is unknown and its biosynthetic pathway has not been demonstrated experimentally. Here, we show that dmhA and dmhB are necessary for 6-deoxyheptose biosynthesis in Y.

View Article and Find Full Text PDF

Campylobacter jejuni produces glycoproteins that are essential for virulence. These glycoproteins carry diacetamidobacillosamine (DAB), a sugar that is not found in humans. Hence, the enzymes responsible for DAB synthesis represent potential therapeutic targets.

View Article and Find Full Text PDF

FlaA1 from the human pathogen Helicobacter pylori is an enzyme involved in saccharide biosynthesis that has been shown to be essential for pathogenicity. Here we present five crystal structures of FlaA1 in the presence of substrate, inhibitors, and bound cofactor, with resolutions ranging from 2.8 to 1.

View Article and Find Full Text PDF

As an update to previously published recommendations for the management of Helicobacter pylori infection, an evidence-based appraisal of 14 topics was undertaken in a consensus conference sponsored by the Canadian Helicobacter Study Group. The goal was to update guidelines based on the best available evidence using an established and uniform methodology to address and formulate recommendations for each topic. The degree of consensus for each recommendation is also presented.

View Article and Find Full Text PDF

Campylobacter jejuni produces multiple glycoproteins whose glycans contain 4-amino 6-deoxy sugars or their derivatives, such as diacetamidobacillosamine or pseudaminic acid. Because the proteoglycans contribute to bacterial virulence and their constitutive sugars are not commonly found in humans, inhibitors developed against the enzymes that are responsible for their biosynthesis could be novel therapeutic targets to fight this important food-borne pathogen. The biosynthesis of diacetamidobacillosamine is anticipated to involve a sugar nucleotide C6 dehydratase, a C4 aminotransferase and an acetyltransferase.

View Article and Find Full Text PDF

WbpP is the only genuine UDP-GlcNAc (UDP-N-acetylglucosamine) C4 epimerase for which both biochemical and structural data are available. This represents a golden opportunity to elucidate the molecular basis for its specificity for N-acetylated substrates. Based on the comparison of the substrate binding site of WbpP with that of other C4 epimerases that convert preferentially non-acetylated substrates, or that are able to convert both acetylated and non-acetylated substrates equally well, specific residues of WbpP were mutated, and the substrate specificity of the mutants was determined by direct biochemical assays and kinetic analyses.

View Article and Find Full Text PDF