Publications by authors named "Creuze J"

In the quest for thinner and more efficient ferroelectric devices, HfZrO (HZO) has emerged as a potential ultrathin and lead-free ferroelectric material. Indeed, when deposited on a TiN electrode, 1-25 nm thick HZO exhibits excellent ferroelectricity capability, allowing the prospective miniaturization of capacitors and transistor devices. To investigate the origin of ferroelectricity in HZO thin films, we conducted a far-infrared (FIR) spectroscopic study on 5 HZO films with thicknesses ranging from 10 to 52 nm, both within and out of the ferroelectric thickness range where ferroelectric properties are observed.

View Article and Find Full Text PDF

We combine electron microscopy measurements of the surface compositions in Cu-Au nanoparticles and atomistic simulations to investigate the effect of gold segregation. While this mechanism has been extensively investigated within Cu-Au in the bulk state, it was never studied at the atomic level in nanoparticles. By using energy dispersive x-ray analysis across the (100) and (111) facets of nanoparticles, we provide evidence of gold segregation in Cu_{3}Au and CuAu_{3} nanoparticles in the 10 nm size range grown by epitaxy on a salt surface with high control of the nanoparticles morphology.

View Article and Find Full Text PDF

It is generally considered that the elementary building blocks of defects in face-centred cubic (fcc) metals, e.g., interstitial dumbbells, coalesce directly into ever larger 2D dislocation loops, implying a continuous coarsening process.

View Article and Find Full Text PDF

Atomic motions and morphological evolution of growing Co-Ag nanoparticles are followed in situ and in real time, by wide and small angle X-ray scattering obtained simultaneously in grazing incidence geometry (GISAXS and GIWAXS), in single or multi-wavelength anomalous modes. The structural analysis of the experimental data is performed with the aid of equilibrium Monte Carlo simulations and of molecular-dynamics simulations of nanoparticle growth. Growth is performed by depositing Co atoms above preformed Ag nanoparticles.

View Article and Find Full Text PDF

We use in situ transmission electron microscopy to monitor in real time the evaporation of gold, copper, and bimetallic copper-gold nanoparticles at high temperature. Besides, we extend the Kelvin equation to two-component systems to predict the evaporation rates of spherical liquid mono- and bimetallic nanoparticles. By linking this macroscopic model to experimental TEM data, we determine the surface energies of pure gold, pure copper, Cu_{50}Au_{50}, and Cu_{25}Au_{75} nanoparticles in the liquid state.

View Article and Find Full Text PDF

The crossovers among the most abundant structural motifs (icosahedra, decahedra and truncated octahedra) of Pd-Au nanoalloys have been determined theoretically in a size range between 2 and 7 nm and for three compositions equivalent to Pd3Au, PdAu and PdAu3. The chemical ordering and segregation optimisation are performed via Monte Carlo simulations using semi-empirical tight-binding potentials fitted to ab initio calculations. The chemical configurations are then quenched via molecular dynamic simulations in order to compare their energy and characterize the equilibrium structures as a function of the cluster size.

View Article and Find Full Text PDF

In order to build the phase diagram of Cu-Ag nanoalloys, segregation isotherms for the different sites of the outer shell of a 405-atom cluster have been obtained by means of Monte Carlo simulations using N-body interatomic potentials. A dynamical equilibrium in phase space is observed for the (001) facets as well as for the (111) facets of the truncated octahedron. For the (001) facets, the bistability originates from a structural transition, the facets oscillating collectively between a Cu-rich square shape of coordinence 4 and an Ag-rich diamond shape of coordinence 6.

View Article and Find Full Text PDF

Using Monte Carlo simulations on a lattice-gas model, we study the segregation isotherm of a cluster made of thousands of atoms for a system that tends to phase separate, e.g., Cu-Ag.

View Article and Find Full Text PDF

We compare the superficial segregations of the Cu-Ag system for a nanoparticle and for surfaces that are structurally equivalent to each of its facet. Based on a lattice-gas model and within a mean-field formalism, we derive segregation isotherms at various temperatures in the canonical ensemble, i.e.

View Article and Find Full Text PDF

Chemical and structural phase transitions induced by Ag surface segregation in the dilute Cu(Ag) (111) system have been investigated by Monte Carlo simulations. The polymorphism observed when depositing Ag on Cu (111) is proven to exist also in equilibrium segregation. If the segregation isotherms are not very sensitive to the superstructures, we show that the superstructure observed in the high part of the isotherm depends strongly on the number of advacancies.

View Article and Find Full Text PDF

The step period (Lambda) of vicinal surfaces can be used as a new parameter for the control of metallic heteroepitaxial growth. This is evidenced here in the case of Ag/Cu(211). The deposition of 1 monolayer (ML) exhibits a c(2 x 10) superstructure leading to the formation of [111] steps in the Ag adlayer in contrast with the original [100] steps for the Cu substrate.

View Article and Find Full Text PDF

Wetting of the Sigma = 5 (310) <001> symmetrical tilt grain boundary (GB) close to the solubility limit in the Cu(Ag) solid solution has been observed by means of Monte Carlo simulations at T = 600 K. More precisely, a finite thickness film almost pure in Ag, separating the two initial Cu(Ag) grains, can be obtained from a critical intergranular germ induced by the strong segregation of Ag in the GB. As this film is actually a single crystal, this implies a complete rearrangement of the GB core structure.

View Article and Find Full Text PDF