Publications by authors named "Cresson C"

Mitochondrial dysfunction plays a major role in physiological aging and in many pathological conditions. Yet, no study has explored the consequence of primary mitochondrial deficiency on the blood-brain barrier (BBB) structure and function. Addressing this question has major implications for pharmacological and genetic strategies aimed at ameliorating the neurological symptoms that are often predominant in patients suffering from these conditions.

View Article and Find Full Text PDF

is a well-known haploinsufficient tumor suppressor gene in human B-cell precursor acute lymphoblastic leukemia (B-ALL) and is involved in various chromosomal translocations that fuse a part of PAX5 with other partners. However, the role of PAX5 fusion proteins in B-ALL initiation and transformation is ill-known. We previously reported a new recurrent t(7;9)(q11;p13) chromosomal translocation in human B-ALL that juxtaposed to the coding sequence of elastin ().

View Article and Find Full Text PDF

Pax5 is the guardian of the B cell identity since it primes or enhances the expression of B cell specific genes and concomitantly represses the expression of B cell inappropriate genes. The tight regulation of is therefore required for an efficient B cell differentiation. A defect in its dosage can translate into immunodeficiency or malignant disorders such as leukemia or lymphoma.

View Article and Find Full Text PDF

Mice with virtually all T cells expressing a single T cell receptor (TCR) on their surface have been instrumental in understanding the development of immature thymocytes. For many years, such an engineering has been achieved essentially by inserting rearranged TCR α and β chain coding sequences into the genome through co-microinjection into fertilized eggs (TCR transgenesis). More recently, a novel methodology relying on the reconstitution of T cell deficient hosts with retrovirally-transduced multipotent bone marrow cells has been developed.

View Article and Find Full Text PDF

Myeloproliferative neoplasms are frequently associated with aberrant constitutive tyrosine kinase (TK) activity resulting from chimaeric fusion genes or point mutations such as BCR-ABL1 or JAK2 V617F. We report here the cloning and functional characterization of two novel fusion genes BCR-RET and FGFR1OP-RET in chronic myelomonocytic leukemia (CMML) cases generated by two balanced translocations t(10;22)(q11;q11) and t(6;10)(q27;q11), respectively. The two RET fusion genes leading to the aberrant activation of RET, are able to transform hematopoietic cells and skew the hematopoietic differentiation program towards the monocytic/macrophage lineage.

View Article and Find Full Text PDF

Ligand binding to cell surface receptors initiates both signal transduction and endocytosis. Although signaling may continue within the endocytic compartment, down-regulation is the major mechanism that controls the concentration of cell surface receptors, their ability to receive environmental signals, and the ultimate strength of biological signaling. Internalization, recycling, and trafficking of receptor tyrosine kinases (RTKs) within the endosome compartment are each regulated to control the overall process of down-regulation.

View Article and Find Full Text PDF

An assay based on a solvent-sensitive fluorogenic dye molecule, badan, is used to test the binding affinity of a library of tetrapeptide molecules for the BIR3 (baculovirus IAP repeat) domain of XIAP (X-linked inhibitor of apoptosis protein). The fluorophore is attached to a tetrapeptide, Ala-Val-Pro-Cys-NH(2), through a thiol linkage and, upon binding to XIAP, undergoes a solvatochromic shift in fluorescence emission. When a molecule (e.

View Article and Find Full Text PDF