Manganese and calcium homeostasis and signalling, in eukaryotic organisms, are regulated through membrane located pumps, channels and exchangers, including the Mn/Ca uncharacterized protein family 0016 (UPF0016). Here we show that Plasmodiophora brassicae PbGDT1 is a member of the UPF0016 and an ortholog of Saccharomyces cerevisiae Gdt1p (GCR Dependent Translation Factor 1) protein involved in manganese homeostasis as well as the calcium mediated stress response in yeast. PbGDT1 complemented the ScGdt1p and ScPMR1 (Ca ATPase) double null mutant under elevated calcium stress but not under elevated manganese conditions.
View Article and Find Full Text PDFWe screened for endoplasmic reticulum (ER) stress-resistant mutants among 25 mutants of the Arabidopsis NTL (NAC with Transmembrane motif 1-Like) family. We identified a novel mutant, SALK_044777, showing strong resistance to ER stress. RT-PCR and genomic DNA sequence analyses identified the mutant as atntl7, which harbors a T-DNA insertion in the fourth exon of AtNTL7.
View Article and Find Full Text PDFTo identify novel roles of SMALL RUBBER PARTICLE PROTEIN Homolog in the non-rubber-producing plant Arabidopsis (AtSRP1), we isolated a T-DNA-insertion knock-out mutant (FLAG_543A05) and investigated its functional characteristics. AtSRP1 is predominantly expressed in reproductive organs and is localized to lipid droplets and ER. Compared to wild-type (WT) Arabidopsis, atsrp1 plants contain small siliques with a reduced number of heterogeneously shaped seeds.
View Article and Find Full Text PDFAlthough a wide range of physiological information on Universal Stress Proteins (USPs) is available from many organisms, their biochemical, and molecular functions remain unidentified. The biochemical function of AtUSP (At3g53990) from Arabidopsis thaliana was therefore investigated. Plants over-expressing AtUSP showed a strong resistance to heat shock and oxidative stress, compared with wild-type and Atusp knock-out plants, confirming the crucial role of AtUSP in stress tolerance.
View Article and Find Full Text PDF