Publications by authors named "Crepeau M"

Background: Novel technologies are needed to combat anopheline vectors of malaria parasites as the reductions in worldwide disease incidence has stalled in recent years. Gene drive-based approaches utilizing Cas9/guide RNA (gRNA) systems are being developed to suppress anopheline populations or modify them by increasing their refractoriness to the parasites. These systems rely on the successful cleavage of a chromosomal DNA target site followed by homology-directed repair (HDR) in germline cells to bias inheritance of the drive system.

View Article and Find Full Text PDF

The COVID-19 pandemic has led to the deaths of millions of people and severe global economic impacts. Small molecule therapeutics have played an important role in the fight against SARS-CoV-2, the virus responsible for COVID-19, but their efficacy has been limited in scope and availability, with many people unable to access their benefits, and better options are needed. EDP-235 is specifically designed to inhibit the SARS-CoV-2 3CLpro, with potent nanomolar activity against all SARS-CoV-2 variants to date, as well as clinically relevant human and zoonotic coronaviruses.

View Article and Find Full Text PDF

The mosquito Anopheles gambiae s.s. is a primary malaria vector throughout sub-Saharan Africa including the islands of the Comoros archipelago (Anjouan, Grande Comore, Mayotte and Mohéli).

View Article and Find Full Text PDF

Background: Rapid adaptation to new environments can facilitate species invasions and range expansions. Understanding the mechanisms of adaptation used by invasive disease vectors in new regions has key implications for mitigating the prevalence and spread of vector-borne disease, although they remain relatively unexplored.

Results: Here, we integrate whole-genome sequencing data from 96 Aedes aegypti mosquitoes collected from various sites in southern and central California with 25 annual topo-climate variables to investigate genome-wide signals of local adaptation among populations.

View Article and Find Full Text PDF

is widely distributed across Africa, including on oceanic islands such as Grande Comore in the Comoros. This species is known to be mostly zoophylic and therefore considered to have low impact on the transmission of human malaria. However, has been found infected with , suggesting that it may be epidemiologically important.

View Article and Find Full Text PDF

Using high-depth whole genome sequencing of F0 mating pairs and multiple individual F1 offspring, we estimated the nuclear mutation rate per generation in the malaria vectors Anopheles coluzzii and Anopheles stephensi by detecting de novo genetic mutations. A purpose-built computer program was employed to filter actual mutations from a deep background of superficially similar artifacts resulting from read misalignment. Performance of filtering parameters was determined using software-simulated mutations, and the resulting estimate of false negative rate was used to correct final mutation rate estimates.

View Article and Find Full Text PDF

During chicken embryonic development, skeleton calcification mainly relies on the eggshell, whose minerals are progressively solubilized and transported to the embryo via the chorioallantoic membrane (CAM). However, the molecular components involved in this process remain undefined. We assessed eggshell demineralization and calcification of the embryo skeleton after 12 and 16 d of incubation, and analyzed the expression of several candidate genes in the CAM: carbonic anhydrases that are likely involved in secretion of protons for eggshell dissolution (CA2, CA4, CA9), ions transporters and regulators (CALB1, SLC4A1, ATP6V1B2, SGK1, SCGN, PKD2) and vitamin-D binding protein (GC).

View Article and Find Full Text PDF

Novel malaria control strategies using genetically engineered mosquitoes (GEMs) are on the horizon. Population modification is one approach wherein mosquitoes are engineered with genes rendering them refractory to the malaria parasite, , coupled with a low-threshold, Cas9-based gene drive. When released into a wild vector population, GEMs preferentially transmit these parasite-blocking genes to their offspring, ultimately modifying a vector population into a nonvector one.

View Article and Find Full Text PDF

Understanding the genomic and environmental basis of cold adaptation is key to understand how plants survive and adapt to different environmental conditions across their natural range. Univariate and multivariate genome-wide association (GWAS) and genotype-environment association (GEA) analyses were used to test associations among genome-wide SNPs obtained from whole-genome resequencing, measures of growth, phenology, emergence, cold hardiness, and range-wide environmental variation in coastal Douglas-fir (). Results suggest a complex genomic architecture of cold adaptation, in which traits are either highly polygenic or controlled by both large and small effect genes.

View Article and Find Full Text PDF

We report the first complete mitogenome (Mt) sequence of an understudied malaria vector in Africa. The sequence was extracted from one individual mosquito from São Tomé island. The length of the Mt genome was 15,408 bp with 79.

View Article and Find Full Text PDF

The genomic architecture and molecular mechanisms controlling variation in quantitative disease resistance loci are not well understood in plant species and have been barely studied in long-generation trees. Quantitative trait loci mapping and genome-wide association studies were combined to test a large single nucleotide polymorphism (SNP) set for association with quantitative and qualitative white pine blister rust resistance in sugar pine. In the absence of a chromosome-scale reference genome, a high-density consensus linkage map was generated to obtain locations for associated SNPs.

View Article and Find Full Text PDF

The pectin methylesterase action is usually studied in a homogeneous aqueous medium in the presence of a large excess of soluble substrate and water. However in the cell wall, the water content is much lower, the substrate is cross-linked with itself or with other polymers, and the enzyme has to diffuse through the solid matrix before catalysing the linkage breakdown. As plant primary cell walls can be considered as cellulose-reinforced hydrogels, this study investigated the diffusion of a fungal pectin methylesterase in pectin/cellulose gels used as cell wall-mimicking matrix to understand the impact of this matrix and its (micro) structure on the enzyme's diffusion within it.

View Article and Find Full Text PDF

The majority of mammalian species are uniparental, with the mother solely providing care for young conspecifics, although fathering behaviours can emerge under certain circumstances. For example, a great deal of individual variation in response to young pups has been reported in multiple inbred strains of laboratory male mice. Furthermore, sexual experience and subsequent cohabitation with a female conspecific can induce caregiving responses in otherwise indifferent, fearful or aggressive males.

View Article and Find Full Text PDF

Background: Both a source of diversity and the development of genomic tools, such as reference genomes and molecular markers, are equally important to enable faster progress in plant breeding. Pear (Pyrus spp.) lags far behind other fruit and nut crops in terms of employment of available genetic resources for new cultivar development.

View Article and Find Full Text PDF

Over the last 20 years, global production of Persian walnut (Juglans regia L.) has grown enormously, likely reflecting increased consumption due to its numerous benefits to human health. However, advances in genome-wide association (GWA) studies and genomic selection (GS) for agronomically important traits in walnut remain limited due to the lack of powerful genomic tools.

View Article and Find Full Text PDF

Dissecting the genetic and genomic architecture of complex traits is essential to understand the forces maintaining the variation in phenotypic traits of ecological and economical importance. Whole-genome resequencing data were used to generate high-resolution polymorphic single nucleotide polymorphism (SNP) markers and genotype individuals from common gardens across the loblolly pine (Pinus taeda) natural range. Genome-wide associations were tested with a large phenotypic dataset comprising 409 variables including morphological traits (height, diameter, carbon isotope discrimination, pitch canker resistance), and molecular traits such as metabolites and expression of xylem development genes.

View Article and Find Full Text PDF
Article Synopsis
  • Genomic analysis in walnuts is set to revolutionize the breeding and production of nuts and lumber, with new reference sequences developed for six walnut relatives.
  • These draft genomes range from 640Mbp to 990Mbp and can be used to identify genomic variations necessary for research and breeding advancements.
  • The study also highlighted the importance of the polyphenol oxidase (PPO) gene's structural and sequence variation, which plays a crucial role in walnut domestication.
View Article and Find Full Text PDF

The 22-gigabase genome of loblolly pine (Pinus taeda) is one of the largest ever sequenced. The draft assembly published in 2014 was built entirely from short Illumina reads, with lengths ranging from 100 to 250 base pairs (bp). The assembly was quite fragmented, containing over 11 million contigs whose weighted average (N50) size was 8206 bp.

View Article and Find Full Text PDF
Article Synopsis
  • A reference genome for Coastal Douglas-fir has been established, marking a significant advancement in Pinaceae family genomics.
  • The genome assembly features exceptional quality, with contig N50 at 44,136 bp and scaffold N50 at 340,704 bp, surpassing other conifer genomes, partly due to improved sequencing technologies and lower repeat content.
  • Comparative analysis shows distinct gene-family dynamics in Douglas-fir compared to angiosperms, revealing insights into traits like shade tolerance and contributing to our understanding of plant evolutionary differences.
View Article and Find Full Text PDF

The 22-gigabase genome of loblolly pine (Pinus taeda) is one of the largest ever sequenced. The draft assembly published in 2014 was built entirely from short Illumina reads, with lengths ranging from 100 to 250 base pairs (bp). The assembly was quite fragmented, containing over 11 million contigs whose weighted average (N50) size was 8206 bp.

View Article and Find Full Text PDF

We investigate the utility and scalability of new read cloud technologies to improve the draft genome assemblies of the colossal, and largely repetitive, genomes of conifers. Synthetic long read technologies have existed in various forms as a means of reducing complexity and resolving repeats since the outset of genome assembly. Recently, technologies that combine subhaploid pools of high molecular weight DNA with barcoding on a massive scale have brought new efficiencies to sample preparation and data generation.

View Article and Find Full Text PDF

Until very recently, complete characterization of the megagenomes of conifers has remained elusive. The diploid genome of sugar pine (Pinus lambertiana Dougl.) has a highly repetitive, 31 billion bp genome.

View Article and Find Full Text PDF

Oak represents a valuable natural resource across Northern Hemisphere ecosystems, attracting a large research community studying its genetics, ecology, conservation, and management. Here we introduce a draft genome assembly of valley oak () using Illumina sequencing of adult leaf tissue of a tree found in an accessible, well-studied, natural southern California population. Our assembly includes a nuclear genome and a complete chloroplast genome, along with annotation of encoded genes.

View Article and Find Full Text PDF

The plant cell wall is held together by the interactions between four major components: cellulose, pectin, hemicellulose, and proteins. Mucilage is a powerful model system to study the interactions between these components as it is formed of polysaccharides that are deposited in the apoplast of seed coat epidermal cells during seed development. When seeds are hydrated, these polysaccharides expand rapidly out of the apoplastic pocket, and form an adherent halo of mucilage around the seed.

View Article and Find Full Text PDF
Article Synopsis
  • The Persian walnut is a key nut species with high nutritional value due to its polyphenolic compounds, but its full biosynthetic pathways remain largely unexplored.
  • Researchers sequenced the genome of the 'Chandler' cultivar, creating a 667-Mbp assembly revealing 32,498 gene models, including two polyphenol oxidase genes (JrPPO1 and JrPPO2).
  • The genome provides vital insights into polyphenol synthesis and serves as a tool for enhancing breeding and understanding complex traits in J. regia.
View Article and Find Full Text PDF