Publications by authors named "Cremo C"

Muscle myosin inhibition could be used to treat many medical conditions involving hypercontractile states, including muscle spasticity, chronic musculoskeletal pain, and hypertrophic cardiomyopathy. A series of 13 advanced analogs of 3-(N-butylethanimidoyl)ethyl)-4-hydroxy-2H-chromen-2-one (BHC) were synthesized to explore extended imine nitrogen side chains and compare aldimines vs. ketimines.

View Article and Find Full Text PDF

The July 2021 issue of is a collection of peer-reviewed articles focused on the function and dynamic regulation of contractile systems in muscle and non-muscle cells.

View Article and Find Full Text PDF

The March 2021 issue of is a collection of peer-reviewed articles focused on the function and dynamic regulation of contractile systems in muscle and non-muscle cells.

View Article and Find Full Text PDF

Myosins in muscle assemble into filaments by interactions between the C-terminal light meromyosin (LMM) subdomains of the coiled-coil rod domain. The two head domains are connected to LMM by the subfragment-2 (S2) subdomain of the rod. Our mixed kinetic model predicts that the flexibility and length of S2 that can be pulled away from the filament affects the maximum distance working heads can move a filament unimpeded by actin-attached heads.

View Article and Find Full Text PDF

Inhibitors of muscle myosin ATPases are needed to treat conditions that could be improved by promoting muscle relaxation. The lead compound for this study ((3-(-butylethanimidoyl)ethyl)-4-hydroxy-2-chromen-2-one; BHC) was previously discovered to inhibit skeletal myosin II. BHC and 34 analogues were synthesized to explore structure-activity relationships.

View Article and Find Full Text PDF

The regulatory light chain (RLC) of myosin is commonly tagged to monitor myosin behavior in vitro, in muscle fibers, and in cells. The goal of this study was to prepare smooth muscle myosin (SMM) filaments containing a single head labeled with a quantum dot (QD) on the RLC. We show that when the RLC is coupled to a QD at Cys-108 and exchanged into SMM, subsequent filament assembly is severely disrupted.

View Article and Find Full Text PDF

In vitro motility assays, where purified myosin and actin move relative to one another, are used to better understand the mechanochemistry of the actomyosin adenosine triphosphatase (ATPase) cycle. We examined the relationship between the relative velocity () of actin and myosin and the number of available myosin heads () or [ATP] for smooth (SMM), skeletal (SKM), and cardiac (CMM) muscle myosin filaments moving over actin as well as from actin filaments moving over a bed of monomeric SKM. These data do not fit well to a widely accepted model that predicts that is limited by myosin detachment from actin (/), where equals step size and equals time a myosin head remains attached to actin.

View Article and Find Full Text PDF

Unlabelled: Myosin light chain kinase (MLCK) phosphorylates S19 of the myosin regulatory light chain (RLC), which is required to activate myosin's ATPase activity and contraction. Smooth muscles are known to display plasticity in response to factors such as inflammation, developmental stage, or stress, which lead to differential expression of nonmuscle and smooth muscle isoforms. Here, we compare steady-state kinetics parameters for phosphorylation of different MLCK substrates: (1) nonmuscle RLC, (2) smooth muscle RLC, and heavy meromyosin subfragments of (3) nonmuscle myosin IIB, and (4) smooth muscle myosin II.

View Article and Find Full Text PDF

Smooth muscle myosin (SMM) light chain kinase (MLCK) phosphorylates SMM, thereby activating the ATPase activity required for muscle contraction. The abundance of active MLCK, which is tightly associated with the contractile apparatus, is low relative to that of SMM. SMM phosphorylation is rapid despite the low ratio of MLCK to SMM, raising the question of how one MLCK rapidly phosphorylates many SMM molecules.

View Article and Find Full Text PDF

It is not known which kinetic step in the acto-myosin ATPase cycle limits contraction speed in unloaded muscles (V0). Huxley's 1957 model [Huxley AF (1957) Prog Biophys Biophys Chem 7:255-318] predicts that V0 is limited by the rate that myosin detaches from actin. However, this does not explain why, as observed by Bárány [Bárány M (1967) J Gen Physiol 50(6, Suppl):197-218], V0 is linearly correlated with the maximal actin-activated ATPase rate (vmax), which is limited by the rate that myosin attaches strongly to actin.

View Article and Find Full Text PDF

Actin-myosin interactions are well studied using soluble myosin fragments, but little is known about effects of myosin filament structure on mechanochemistry. We stabilized unphosphorylated smooth muscle myosin (SMM) and phosphorylated smooth muscle myosin (pSMM) filaments against ATP-induced depolymerization using a cross-linker and attached fluorescent rhodamine (XL-Rh-SMM). Electron micrographs showed that these side polar filaments are very similar to unmodified filaments.

View Article and Find Full Text PDF

To determine the mechanism by which sucrose slows in vitro actin sliding velocities, V, we used stopped flow kinetics and a single molecule binding assay, SiMBA. We observed that in the absence of ATP, sucrose (880mM) slowed the rate of actin-myosin (A-M) strong binding by 71±8% with a smaller inhibitory effect observed on spontaneous rigor dissociation (21±3%). Similarly, in the presence of ATP, sucrose slowed strong binding associated with Pi release by 85±9% with a smaller inhibitory effect on ATP-induced A-M dissociation, kT (39±2%).

View Article and Find Full Text PDF

During activation of smooth muscle contraction, one myosin light chain kinase (MLCK) molecule rapidly phosphorylates many smooth muscle myosin (SMM) molecules, suggesting that muscle activation rates are influenced by the kinetics of MLCK-SMM interactions. To determine the rate-limiting step underlying activation of SMM by MLCK, we measured the kinetics of calcium-calmodulin (Ca²⁺CaM)-MLCK-mediated SMM phosphorylation and the corresponding initiation of SMM-based F-actin motility in an in vitro system with SMM attached to a coverslip surface. Fitting the time course of SMM phosphorylation to a kinetic model gave an initial phosphorylation rate, kp(o), of ~1.

View Article and Find Full Text PDF

In striated muscle, calcium binding to the thin filament (TF) regulatory complex activates actin-myosin ATPase activity, and actin-myosin kinetics in turn regulates TF activation. However, a quantitative description of the effects of actin-myosin kinetics on the calcium sensitivity (pCa50) and cooperativity (nH) of TF activation is lacking. With the assumption that TF structural transitions and TF-myosin binding transitions are inextricably coupled, we advanced the principles established by Kad et al.

View Article and Find Full Text PDF

Unloaded shortening speeds, , of muscle are thought to be limited by actin-bound myosin heads that resist shortening, or = ·· where is the rate at which myosin detaches from actin and is myosin's step size. The -term describes the efficiency of force transmission between myosin heads, and has been shown to become less than one at low myosin densities in a motility assay. Molecules such as inorganic phosphate, P, and blebbistatin inhibit both and actin-myosin strong binding kinetics suggesting a link between and attachment kinetics.

View Article and Find Full Text PDF

We examined the regulatory importance of interactions between regulatory light chain (RLC), essential light chain (ELC), and adjacent heavy chain (HC) in the regulatory domain of smooth muscle heavy meromyosin. After mutating the HC, RLC, and/or ELC to disrupt their predicted interactions (using scallop myosin coordinates), we measured basal ATPase, V(max), and K(ATPase) of actin-activated ATPase, actin-sliding velocities, rigor binding to actin, and kinetics of ATP binding and ADP release. If unphosphorylated, all mutants were similar to wild type showing turned-off behaviors.

View Article and Find Full Text PDF

The smooth muscle isoform of myosin light chain kinase (MLCK) is a Ca(2+)-calmodulin-activated kinase that is found in many tissues. It is particularly important for regulating smooth muscle contraction by phosphorylation of myosin. This review summarizes selected aspects of recent biochemical work on MLCK that pertains to its function in smooth muscle.

View Article and Find Full Text PDF

Double electron electron resonance EPR methods was used to measure the effects of the allosteric modulators, phosphorylation, and ATP, on the distances and distance distributions between the two regulatory light chain of myosin (RLC). Three different states of smooth muscle myosin (SMM) were studied: monomers, the short-tailed subfragment heavy meromyosin, and SMM filaments. We reconstituted myosin with nine single cysteine spin-labeled RLC.

View Article and Find Full Text PDF

Myosin 2 from vertebrate smooth muscle or non-muscle sources is in equilibrium between compact, inactive monomers and thick filaments under physiological conditions. In the inactive monomer, the two heads pack compactly together, and the long tail is folded into three closely packed segments that are associated chiefly with one of the heads. The molecular basis of the folding of the tail remains unexplained.

View Article and Find Full Text PDF

The 10S self-inhibited monomeric conformation of myosin II has been characterized extensively in vitro. Based upon its structural and functional characteristics, it has been proposed to be an assembly-competent myosin pool in equilibrium with filaments in cells. It is known that myosin filaments can assemble and disassemble in nonmuscle cells, and in some smooth muscle cells, but whether or not the disassembled pool contains functional 10S myosin has not been determined.

View Article and Find Full Text PDF

Activation of thin filaments in striated muscle occurs when tropomyosin exposes myosin binding sites on actin either through calcium-troponin (Ca-Tn) binding or by actin-myosin (A-M) strong binding. However, the extent to which these binding events contributes to thin filament activation remains unclear. Here we propose a simple analytical model in which strong A-M binding and Ca-Tn binding independently activates the rate of A-M weak-to-strong binding.

View Article and Find Full Text PDF

To understand the importance of selected regions of the regulatory light chain (RLC) for phosphorylation-dependent regulation of smooth muscle myosin (SMM), we expressed three heavy meromyosins (HMMs) containing the following RLC mutants; K12E in a critical region of the phosphorylation domain, GTDP(95-98)/AAAA in the central hinge, and R160C a putative binding residue for phosphorylated S19. Single-turnover actin-activated Mg(2+)-ATPase (V(max) and K(ATPase)) and in vitro actin-sliding velocities were examined for both unphosphorylated (up-) and phosphorylated (p-) states. Turnover rates for the up-state (0.

View Article and Find Full Text PDF

HSP20 (HSPB6) is a small heat shock protein expressed in smooth muscles that is hypothesized to inhibit contraction when phosphorylated by cAMP-dependent protein kinase. To investigate this hypothesis in airway smooth muscle (ASM) we showed that HSP20 was constitutively expressed as well as being inducible in cultured hASM cells by treatment with 1 μM isoproterenol or 10 μM salmeterol. In contrast, a mixture of proinflammatory mediators (interleukin-1β, tumor necrosis factor α, and interferon γ) inhibited expression of HSP20 by about 50% in 48 hours.

View Article and Find Full Text PDF

A current popular model to explain phosphorylation of smooth muscle myosin (SMM) by myosin light-chain kinase (MLCK) proposes that MLCK is bound tightly to actin but weakly to SMM. We found that MLCK and calmodulin (CaM) co-purify with unphosphorylated SMM from chicken gizzard, suggesting that they are tightly bound. Although the MLCK:SMM molar ratio in SMM preparations was well below stoichiometric (1:73+/-9), the ratio was approximately 23-37% of that in gizzard tissue.

View Article and Find Full Text PDF

Kinesin-1 is a molecular motor protein that transports cargo along microtubules. Inside cells, the vast majority of kinesin-1 is regulated to conserve ATP and to ensure its proper intracellular distribution and coordination with other molecular motors. Regulated kinesin-1 folds in half at a hinge in its coiled-coil stalk.

View Article and Find Full Text PDF