Publications by authors named "Creanor J"

We describe a quantitative Fourier transform ion cyclotron resonance mass spectrometric (FTICR MS) analysis of the relative proportions of post-translational modification states (PTMs) of core histones in cultured cells and tissues. A novel preseparation process using a monolithic column interfaced to a 12 T FTICR MS equipped with electron capture dissociation (ECD) yields very high mass accuracy spectra, allowing direct assignment of the PTMs present in the dominant modification states of intact H4, resolving a well recognized ambiguity between trimethylation and acetylation states. By eliminating preseparation, we also obtain a highly quantitative analysis of the distribution of H4 PTMs.

View Article and Find Full Text PDF

1. Na+-K+-2Cl- cotransport activity was measured in ferret erythrocytes as the bumetanide-sensitive uptake of 86Rb. 2.

View Article and Find Full Text PDF

1. Na+-K+-2Cl- cotransport in ferret erythrocytes was measured as the bumetanide-sensitive uptake of 86Rb. 2.

View Article and Find Full Text PDF

The levels of the B cyclin p56cdc13 and the phosphatase p80cdc25 have been followed in selection-synchronised cultures of Schizosaccharomyces pombe wild-type and wee1 mutant cells. p56cdc13 has also been followed in induction-synchronised cells of the mutant cdc2-33. The main conclusions are: (1) cdc13 levels in wild-type cells start to rise from base line at about mid-G2, reach a peak before mitosis and then fall slowly through G1.

View Article and Find Full Text PDF

Cyclophilins are peptidyl-prolyl cis-trans isomerases (PPIases) which have been implicated in intracellular protein folding, transport and assembly. Cyclophilins are also known as the intracellular receptors for the immunosuppressive drug cyclosporin A (CsA). The most common type of cyclophilins are the 18 kDa cytosolic proteins containing only the highly conserved core domain for PPIase and CsA binding activities.

View Article and Find Full Text PDF

In this paper we describe properties of the cdc10-C4 mutant of the fission yeast Schizosaccharomyces pombe. The cdc10+ gene encodes a component of the DSC1Sp/MBF transcription complex, which is required for cell-cycle regulated expression at G1-S of several genes via cis-acting MCB (MIuI cell cycle box) elements. At permissive temperatures cdc10-C4 causes expression of MCB-regulated genes through the whole cell cycle, which in asynchronously dividing cells is manifested in overall higher expression levels.

View Article and Find Full Text PDF

Fission yeast temperature-sensitive cut5 (cell untimely torn) mutants are defective in initiation and/or elongation of DNA replication but allow mitosis and cell division at a restrictive temperature. We show that the cut5 protein (identical to rad4) (i) is an essential component of the replication checkpoint system but not the DNA damage checkpoint, and (ii) negatively regulates the activation of M phase kinase at mitotic entry. Even if the replication checkpoint has been activated previously, cut5 mutations allow mitosis and cell division after shift to 36 degrees C.

View Article and Find Full Text PDF

H1 histone kinase activity has been followed in selection-synchronised cultures of fission yeast wild-type and wee1 mutant cells, and in induction-synchronised cells of the mutant cdc2-33. The main conclusions are: (1) in all three cases, the peak of activity is near mitosis. (2) The rise in activity is relatively slow starting in wild type at 0.

View Article and Find Full Text PDF

The protein serine-threonine kinase p34cdc2+ plays a central role in the control of the mitotic cell cycle of the fission yeast Schizosaccharomyces pombe. p34cdc2+ function is required both for the initiation of DNA replication and for entry into mitosis, and is also required for the initiation of the second meiotic nuclear division. Recent extensive analysis of p34cdc2+ homologue proteins in higher eukaryotes has demonstrated that p34cdc2+ function is likely to be conserved in all eukaryotic cells.

View Article and Find Full Text PDF

DNA synthesis is normally dependent on a cell having previously gone through mitosis. Hirano et al. (1986), however, found that DNA synthesis continued at the restrictive temperature in the double mutant cut1 cdc11 of Schizosaccharomyces pombe even though mitosis was blocked in some of the cells.

View Article and Find Full Text PDF

Synchrony was induced in cultures of the mitotic mutant cdc2.33 of Schizosaccharomyces pombe by shifting up an asynchronous culture to the restrictive temperature for a period of 3.5-4.

View Article and Find Full Text PDF

In confirmation of earlier results, nucleoside diphosphokinase is shown to be a 'step' enzyme in Schizosaccharomyces pombe with a sharp doubling in activity at the beginning of the cell cycle. These doubling steps occur at the same time in the cycle in the smaller cells of the mutant wee1.6.

View Article and Find Full Text PDF

The mechanism of resistance to the arginine analogue L-canavanine, and of arginine uptake, were examined in the fission yeast Schizosaccharomyces pombe. Two mutants with increased resistance to canavanine were analysed genetically: both were double mutants, and in each case one mutation conferred resistance to canavanine, while the other enhanced this resistance. Evidence is presented that can 1.

View Article and Find Full Text PDF

The rate of protein synthesis has been measured with pulse labels of [3H]tryptophan in synchronous and asynchronous cultures of cdc mutants of Schizosaccharomyces pombe shifted up to the restrictive temperature. The cell cycle related fluctuations in rate that occur in normal synchronous cultures vanish when nuclear division is blocked in synchronous cultures of cdc2 and cdc10. But they persist in cdc11 where nuclear division continues and cleavage is stopped.

View Article and Find Full Text PDF

Synchronous cultures prepared by selection from an elutriating rotor were used to measure activity changes during the cell cycle of the following enzymes: acid phosphatase in Schizosaccharomyces pombe and Saccharomyces cerevisiae, alpha-glucosidase in S. cerevisiae and beta-galactosidase in Kluyveromyces lactis. There was no sign of step rises in activity in acid phosphatase but there were indications in S.

View Article and Find Full Text PDF

The rate of protein synthesis through the cell cycle of Schizosaccharomyces pombe has been determined from the incorporation of pulses of [3H]tryptophan in synchronous cultures prepared by selection in an elutriating rotor. This selection procedure caused minimal perturbations as judged by asynchronous control cultures, which had also been put through the rotor. The rate of synthesis showed a periodic pattern rather than a smooth exponential increase.

View Article and Find Full Text PDF

The rate of CO2 evolution was measured in synchronous cultures of the fission yeast Schizosaccharomyces pombe growing in a minimal medium. The rate of CO2 evolution was found to double sharply at about the time of nuclear division (0.75 of the way through the cell cycle).

View Article and Find Full Text PDF

Oxygen uptake was measured in synchronous cultures of the fission yeast Schizosaccharomyces pombe. The rate of oxygen uptake was found to increase in a step-wise manner at the beginning of the cycle and again in the middle of the cycle. The increases in rate were such that overall, oxygen uptake doubled in rate once per cell cycle.

View Article and Find Full Text PDF

The effect of 8-hydroxyquinoline, a rapid inhibitor of RNA synthesis, was followed on the activity of a number of enzymes in cultures of the fission yeast Schizosaccharomyces pombe. Two types of effect were found. In the first the activity continued to rise for a period and then remained constant.

View Article and Find Full Text PDF

RNA synthesis in yeast is rapidly inhibited by 8-hydroxyquinoline and the phenazine antibiotic lomofungin (5-formyl-1-methoxycarbonyl-4,6,8-trihydroxyphenazine). It is shown that lomofungin, like 8-hydroxyquinoline, is a chelating agent for bivalent cations. The mechanism of inhibition of RNA synthesis by lomofungin and 8-hydroxyquinoline was investigated in experiments with isolated Escherichia coli RNA polymerase.

View Article and Find Full Text PDF