Publications by authors named "Creancier L"

Immunosuppressants used in organ transplant patients increase the risk of non-melanoma skin cancer. This study aimed to evaluate patient behaviours towards skin cancer prevention methods and to understand characteristics of a future prevention strategy based on patients' perspective. Carenity, a global online patient community, enabled the recruitment of 200 adult patients with solid organ transplants from four European countries: France, Italy, Spain and Germany.

View Article and Find Full Text PDF

Chromosomal rearrangements of the NTRK1 gene, which encodes the high affinity nerve growth factor receptor (tropomyosin related kinase, TRKA), have been observed in several epithelial cancers, such as colon cancer, papillary thyroid carcinoma or non small cell lung cancer. The various NTRK1 fusions described so far lead to constitutive activation of TRKA kinase activity and are oncogenic. We further investigated here the existence and the frequency of NTRK1 gene rearrangements in colorectal cancer.

View Article and Find Full Text PDF

Chemotherapy remains mainly used for the treatment of acute myeloid leukemia (AML). However, in the past 3 decades limited progress has been achieved in improving the long-term disease-free survival. Therefore the development of more effective drugs for AML represents a high level of priority.

View Article and Find Full Text PDF

Background: The assessment of anticancer agents to treat leukemia needs to have animal models closer to the human pathology such as implantation in immunodeficient mice of leukemic cells from patient samples. A sensitive and early detection of tumor cells in these orthotopic models is a prerequisite for monitoring engraftment of leukemic cells and their dissemination in mice. Therefore, we developed a fluorescent antibody based strategy to detect leukemic foci in mice bearing patient-derived leukemic cells using fluorescence reflectance imaging (FRI) to determine when to start treatments with novel antitumor agents.

View Article and Find Full Text PDF

Mutations in DNMT3A encoding DNA methyltransferase 3A were recently described in patients with acute myeloid leukemia. To assess their prognostic significance, we determined the mutational status of DNMT3A exon 23 in 288 patients with AML excluding acute promyelocytic leukemia, aged from 18 to 65 years and treated in Toulouse University Hospital. A mutation was detected in 39 patients (13.

View Article and Find Full Text PDF

Purpose: We have developed a method of quantitation for correcting tissue absorption in in vivo bioluminescence imaging (BLI).

Procedures: Variations of luciferin emission spectrum were determined and were related to photon absorption to determine a correction curve. This was validated by combining BLI with tomoscintigraphy and tomodensitometry, which were applied to a lymphoma model.

View Article and Find Full Text PDF

Polo like kinase-1 is a key effector of cell division and its overexpression in several cancers is often linked with negative prognostic. We recently described that Plk1 is overexpressed in acute myeloid leukemia, and that its inhibition selectively reduces the proliferation of leukemic cells. Here, we report that Plk1 inhibition or depletion using pharmacological and siRNA approaches decreased the phosphorylation of two mTOR substrates in AML cells.

View Article and Find Full Text PDF

Triptolide, a natural product extracted from the Chinese plant Tripterygium wilfordii, possesses antitumor properties. Despite numerous reports showing the proapoptotic capacity and the inhibition of NF-kappaB-mediated transcription by triptolide, the identity of its cellular target is still unknown. To clarify its mechanism of action, we further investigated the effect of triptolide on RNA synthesis in the human non-small cell lung cancer cell line A549.

View Article and Find Full Text PDF

Polo-like kinase 1 (Plk1) is a major mitotic regulator overexpressed in many solid tumors. Its role in hematopoietic malignancies is still poorly characterized. In this study, we demonstrate that Plk1 is highly expressed in leukemic cell lines, and overexpressed in a majority of samples from patients with acute myeloid leukemia compared with normal progenitors.

View Article and Find Full Text PDF

The ubiquitin-proteasome pathway plays a critical role in the degradation of proteins involved in tumor growth and has therefore become a target for cancer therapy. In order to discover novel inhibitors of this pathway, a cellular assay reporter of proteasome activity was established. Human DLD-1 colon cancer cells were engineered to express a 4 ubiquitin-luciferase (DLD-1 4Ub-Luc) reporter protein, rapidly degraded via the ubiquitin-proteasome pathway and designed DLD-1 4Ub-Luc cells.

View Article and Find Full Text PDF

Acridine derivatives, such as amsacrine, represent a well known class of multi-targeted anti-cancer agents that generally interfere with DNA synthesis and inhibit topoisomerase II. But in addition, these tricyclic molecules often display secondary effects on other biochemical pathways including protein metabolism. In order to identify novel anti-cancer drugs, we evaluated the mechanism of action of a novel series of bis- and tetra-acridines.

View Article and Find Full Text PDF

To discover original inhibitors of the ubiquitin-proteasome pathway, the authors have developed a cell-based bioluminescent assay and used it to screen collections of plant extracts and chemical compounds. They first established a DLD-1 human colon cancer cell line that stably expresses a 4Ubiquitin-Luciferase (4Ub-Luc) reporter protein, efficiently targeted to the ubiquitin-proteasome degradation pathway. The assay was then adapted to 96- and 384-well plate formats and calibrated with reference proteasome inhibitors.

View Article and Find Full Text PDF

Background: Polycistronic retroviral vectors that contain several therapeutic genes linked via internal ribosome entry sites (IRES), provide new and effective tools for the co-expression of exogenous cDNAs in clinical gene therapy protocols. For example, tricistronic retroviral vectors could be used to genetically modify antigen presenting cells, enabling them to express different co-stimulatory molecules known to enhance tumor cell immunogenicity.

Results: We have constructed and compared different retroviral vectors containing two co-stimulatory molecules (CD70, CD80) and selectable marker genes linked to different IRES sequences (IRES from EMCV, c-myc, FGF-2 and HTLV-1).

View Article and Find Full Text PDF

Purpose: The purpose of the study was to investigate the mechanisms associated with antitumor activity and resistance to F11782, a novel dual catalytic inhibitor of topoisomerases with DNA repair-inhibitory properties.

Experimental Design: For that purpose, an F11782-resistant P388 leukemia subline (P388/F11782) has been developed in vivo and characterized.

Results: Weekly subtherapeutic doses of F11782 (10 mg/kg) induced complete resistance to F11782 after 8 weekly passages.

View Article and Find Full Text PDF

The 484-nucleotide (nt) alternatively translated region (ATR) of the human fibroblast growth factor 2 (FGF-2) mRNA contains four CUG and one AUG translation initiation codons. Although the 5'-end proximal CUG codon is initiated by a cap-dependent translation process, the other four initiation codons are initiated by a mechanism of internal entry of ribosomes. We undertook here a detailed analysis of the cis-acting elements defining the FGF-2 internal ribosome entry site (IRES).

View Article and Find Full Text PDF

Translation of picornavirus RNAs is mediated by internal ribosomal entry site (IRES) elements and requires both standard eukaryotic translation initiation factors (eIFs) and IRES-specific cellular trans-acting factors (ITAFs). Unr, a cytoplasmic RNA-binding protein that contains five cold-shock domains and is encoded by the gene upstream of N-ras, stimulates translation directed by the human rhinovirus (HRV) IRES in vitro. To examine the role of Unr in translation of picornavirus RNAs in vivo, we derived murine embryonic stem (ES) cells in which either one (-/+) or both (-/-) copies of the unr gene were disrupted by homologous recombination.

View Article and Find Full Text PDF

We recently demonstrated that the very long 5'-untranslated region (5'-UTR) of the vascular endothelial growth factor (VEGF) mRNA contains two independent internal ribosome entry sites (IRES A and B). In the human sequence, four potential CUG translation initiation codons are located in between these IRES and are in frame with the classical AUG start codon. By in vitro translation and COS-7 cell transfections, we demonstrate that a high mol wt VEGF isoform [called large VEGF (L-VEGF)] is generated by an alternative translation initiation process, which occurs at the first of these CUG codons.

View Article and Find Full Text PDF

Tumour suppressor p53 has been shown to inhibit fibroblast growth factor 2 expression post-transcriptionally in cultured cells. Here we have investigated the mechanism responsible for this post-transcriptional blockade. Deletion mutagenesis of the FGF-2 mRNA leader revealed the requirement of at least four RNA cis-acting elements to mediate the inhibitory effect of p53 in SK-Hep-1 transfected cells, suggesting the involvement of RNA secondary or tertiary structures.

View Article and Find Full Text PDF

Fibroblast growth factor-2 (FGF-2) is a powerful mitogen and angiogenic factor whose expression is strongly regulated at the translational level. The constitutive upregulation of FGF-2 isoforms in transformed cells prompted us to investigate the post-transcriptional effects of a tumour suppressor, p53, on FGF-2 expression. We show here in human primary skin fibroblasts that the cell density-dependent variation of FGF-2 mRNA translatability was inversely correlated with endogenous p53 expression.

View Article and Find Full Text PDF

The expression of c-myc proto-oncogene, a key regulator of cell proliferation and apoptosis, is controlled at different transcriptional and posttranscriptional levels. In particular, the c-myc mRNA contains an internal ribosome entry site (IRES) able to promote translation initiation independently from the classical cap-dependent mechanism. We analyzed the variations of c-myc IRES activity ex vivo in different proliferating cell types, and in vivo in transgenic mice expressing a bicistronic dual luciferase construct.

View Article and Find Full Text PDF

Fibroblast growth factor 2 (FGF-2) is a powerful mitogen involved in proliferation, differentiation, and survival of various cells including neurons. FGF-2 expression is translationally regulated; in particular, the FGF-2 mRNA contains an internal ribosome entry site (IRES) allowing cap-independent translation. Here, we have analyzed FGF-2 IRES tissue specificity ex vivo and in vivo by using a dual luciferase bicistronic vector.

View Article and Find Full Text PDF

The mRNA of vascular endothelial growth factor (VEGF), the major angiogenic growth factor, contains an unusually long (1,038 nucleotides) and structured 5' untranslated region (UTR). According to the classical translation initiation model of ribosome scanning, such a 5' UTR is expected to be a strong translation inhibitor. In vitro and bicistronic strategies were used to show that the VEGF mRNA translation was cap independent and occurred by an internal ribosome entry process.

View Article and Find Full Text PDF

We describe a gene encoding p73, a protein that shares considerable homology with the tumor suppressor p53. p73 maps to 1p36, a region frequently deleted in neuroblastoma and other tumors and thought to contain multiple tumor suppressor genes. Our analysis of neuroblastoma cell lines with 1p and p73 loss of heterozygosity failed to detect coding sequence mutations in remaining p73 alleles.

View Article and Find Full Text PDF

Nucleolin (713 aa), a major nucleolar protein, presents two structural domains: a N-terminus implicated in interaction with chromatin and a C-terminus containing four RNA-binding domains (RRMs) and a glycine/arginine-rich domain mainly involved in pre-rRNA packaging. Furthermore, nucleolin was shown to shuttle between cytoplasm and nucleolus. To get an insight on the nature of nuclear and nucleolar localization signals, a set of nucleolin deletion mutants in fusion with the prokaryotic chloramphenicol acetyltransferase (CAT) were constructed, and the resulting chimeric proteins were recognized by anti-CAT antibodies.

View Article and Find Full Text PDF