Publications by authors named "Cravatt B"

Histone deacetylases (HDACs) are key regulators of gene expression that require assembly into larger protein complexes for activity. Efforts to understand how associated proteins modulate the function of HDACs would benefit from new technologies that evaluate HDAC activity in native biological systems. Here, we describe an active site-directed chemical probe for profiling HDACs in native proteomes and live cells.

View Article and Find Full Text PDF

In the present study, we investigated whether anandamide produces its behavioral effects through a cannabinoid CB(1) receptor mechanism of action. The behavioral effects of anandamide were evaluated in mice that lacked both fatty acid amide hydrolase (FAAH) and cannabinoid CB(1) receptors (DKO) as compared to FAAH (-/-), cannabinoid CB(1) (-/-), and wild type mice. Anandamide produced analgesia, catalepsy, and hypothermia in FAAH (-/-) mice, but failed to elicit any of these effects in the other three genotypes.

View Article and Find Full Text PDF

Endocannabinoid signaling plays the important role in regulation of ethanol intake. Fatty acid amide hydrolase (FAAH) is a key membrane protein for metabolism of endocannabinoids, including anandamide, and blockade of FAAH increases the level of anandamide in the brain. To determine if FAAH regulates ethanol consumption, we studied mutant mice with deletion of the FAAH gene.

View Article and Find Full Text PDF

Fatty acid amide hydrolase (FAAH) is a dimeric, membranebound enzyme that degrades neuromodulatory fatty acid amides and esters and is expressed in mammalian brain and peripheral tissues. The cleavage of approximately 30 amino acids from each subunit creates an FAAH variant that is soluble and homogeneous in detergent-containing buffers, opening the avenue to the in vitro mechanistic and structural studies. Here we have studied the stability of FAAH as a function of guanidinium hydrochloride concentration and of hydrostatic pressure.

View Article and Find Full Text PDF

Oleoylethanolamide (OEA) is a lipid mediator that inhibits food intake by activating the nuclear receptor peroxisome proliferator-activated receptor-alpha. In the rodent small intestine OEA levels decrease during food deprivation and increase upon refeeding, suggesting that endogenous OEA may participate in the regulation of satiety. Here we show that feeding stimulates OEA mobilization in the mucosal layer of rat duodenum and jejunum but not in the serosal layer from the same intestinal segments in other sections of the gastrointestinal tract (stomach, ileum, colon) or in a broad series of internal organs and tissues (e.

View Article and Find Full Text PDF

Hundreds, if not thousands, of uncharacterized enzymes currently populate the human proteome. Assembly of these proteins into the metabolic and signaling pathways that govern cell physiology and pathology constitutes a grand experimental challenge. Here, we address this problem by using a multidimensional profiling strategy that combines activity-based proteomics and metabolomics.

View Article and Find Full Text PDF

Recent reports have demonstrated that disruption of CB(1) receptor signaling impairs extinction of learned responses in conditioned fear and Morris water maze paradigms. Here, we test the hypothesis that elevating brain levels of the endogenous cannabinoid anandamide through either genetic deletion or pharmacological inhibition of its primary catabolic enzyme fatty-acid amide hydrolase (FAAH) will potentiate extinction in a fixed platform water maze task. FAAH (-/-) mice and mice treated with the FAAH inhibitor OL-135, did not display any memory impairment or motor disruption, but did exhibit a significant increase in the rate of extinction.

View Article and Find Full Text PDF

Fatty acid amides constitute a large and diverse class of lipid transmitters that includes the endogenous cannabinoid anandamide and the sleep-inducing substance oleamide. The magnitude and duration of fatty acid amide signaling are controlled by enzymatic hydrolysis in vivo. Fatty acid amide hydrolase (FAAH) activity in mammals has been primarily attributed to a single integral membrane enzyme of the amidase signature (AS) family.

View Article and Find Full Text PDF

Lipid transmitters are tightly regulated by a balance of biosynthetic and degradative enzymes. Termination of the activity of the N-acyl ethanolamine (NAE) class of lipid-signaling molecules, including the endocannabinoid anandamide (AEA), is principally mediated by the integral membrane enzyme fatty acid amide hydrolase (FAAH) in vivo. FAAH(-/-) mice are highly sensitized to the pharmacological effects of AEA; however, these animals eventually recover from AEA treatment, implying the existence of alternative routes for NAE metabolism.

View Article and Find Full Text PDF

Serine hydrolase KIAA1363 is highly expressed in invasive cancer cells and is the major protein in mouse brain diethylphosphorylated by and hydrolyzing low levels of chlorpyrifos oxon (CPO) (the activated metabolite of a major insecticide). It is also the primary CPO-hydrolyzing enzyme in spinal cord, kidney, heart, lung, testis, and muscle but not liver, a pattern of tissue expression confirmed by fluorophosphonate-rhodamine labeling. KIAA1363 gene deletion using homologous recombination reduces CPO binding, hydrolysis, and metabolism 3-29-fold on incubation with brain membranes and homogenates determined with 1 nM [(3)H-ethyl]CPO and the inhibitory potency for residual CPO with butyrylcholinesterase as a biomarker.

View Article and Find Full Text PDF

Synchronized preimplantation embryo development and passage through the oviduct into the uterus are prerequisites for implantation, dysregulation of which often leads to pregnancy failure in women. Cannabinoid/endocannabinoid signaling via cannabinoid receptor CB1 is known to influence early pregnancy. Here we provide evidence that a critical balance between anandamide synthesis by N-acylphosphatidylethanolamine-selective phospholipase D (NAPE-PLD) and its degradation by fatty acid amide hydrolase (FAAH) in mouse embryos and oviducts creates locally an appropriate "anandamide tone" for normal development of embryos and their oviductal transport.

View Article and Find Full Text PDF

How lipid transmitters move within and between cells to communicate signals remains an important and largely unanswered question. Integral membrane transporters, soluble lipid-binding proteins, and metabolic enzymes have all been proposed to collaboratively regulate lipid signaling dynamics in vivo. Assignment of the relative contributions made by each of these classes of proteins requires selective pharmacological agents to perturb their individual functions.

View Article and Find Full Text PDF

Fatty acid amide hydrolase (FAAH) inactivates a large and diverse class of endogenous signaling lipids termed fatty acid amides. Representative fatty acid amides include the N-acyl ethanolamines (NAEs) anandamide, which serves as an endogenous ligand for cannabinoid receptors, and N-oleoyl and N-palmitoyl ethanolamine, which produce satiety and anti-inflammatory effects, respectively. Global metabolite profiling studies of FAAH (-/-) mice have recently identified a second class of endogenous FAAH substrates: the N-acyl taurines (NATs).

View Article and Find Full Text PDF

Fatty acid amide hydrolase (FAAH) is an integral membrane enzyme that catabolizes several bioactive lipids in vivo. Most of the physiological substrates of FAAH characterized to date belong to the N-acyl ethanolamine (NAE) class of fatty acid amides, including the endocannabinoid anandamide, the anti-inflammatory lipid N-palmitoyl ethanolamine, and the satiating factor N-oleoyl ethanolamine. We recently identified a second structural class of fatty acid amides regulated by FAAH in vivo: the N-acyl taurines (NATs).

View Article and Find Full Text PDF

N-Acyl ethanolamines (NAEs) are a large class of signaling lipids implicated in diverse physiological processes, including nociception, cognition, anxiety, appetite, and inflammation. It has been proposed that NAEs are biosynthesized from their corresponding N-acyl phosphatidylethanolamines (NAPEs) in a single enzymatic step catalyzed by a phospholipase D (NAPE-PLD). The recent generation of NAPE-PLD(-/-) mice has revealed that these animals possess lower brain levels of saturated NAEs but essentially unchanged concentrations of polyunsaturated NAEs, including the endogenous cannabinoid anandamide.

View Article and Find Full Text PDF

The regulation of Purkinje cell activity is important for motor behavior and motor learning. As the sole output cell of the cerebellar cortex, Purkinje cell firing is controlled by parallel fibers and climbing fiber synapses, and by inhibitory interneurons. Depolarization of Purkinje cells evokes endocannabinoid release that activates cannabinoid CB1 receptors expressed on boutons of its synaptic inputs to transiently decrease neurotransmitter release.

View Article and Find Full Text PDF

The field of proteomics aims to develop and apply technologies for the characterization of protein function on a global scale. Toward this end, synthetic chemistry has played a major role by providing new reagents to profile segments of the proteome based on activity rather than abundance. Small molecule probes for activity-based protein profiling have been created for more than a dozen enzyme classes and used to discover several enzyme activities elevated in disease states.

View Article and Find Full Text PDF

Entry of malignant cells into the vasculature (i.e. intravasation) requires proteolytic remodeling of the extracellular matrix so that tumor cells may pass through the local stroma and penetrate the vessel wall.

View Article and Find Full Text PDF

N-Acyl ethanolamines (NAEs) constitute a large and diverse class of signaling lipids that includes the endogenous cannabinoid anandamide. Like other lipid transmitters, NAEs are thought to be biosynthesized and degraded on-demand rather than being stored in vesicles prior to signaling. The identification of enzymes involved in NAE metabolism is therefore imperative to achieve a complete understanding of this lipid signaling system and control it for potential therapeutic gain.

View Article and Find Full Text PDF

Metalloproteases are a large, diverse class of enzymes involved in many physiological and disease processes. Metalloproteases are regulated by post-translational mechanisms that diminish the effectiveness of conventional genomic and proteomic methods for their functional characterization. Chemical probes directed at active sites offer a potential way to measure metalloprotease activities in biological systems; however, large variations in structure limit the scope of any single small-molecule probe aimed at profiling this enzyme class.

View Article and Find Full Text PDF

Chlamydia trachomatis is an obligate intracellular bacterium responsible for a number of human diseases. The mechanism underlying the intracellular parasitology of Chlamydiae remains poorly understood. In searching for host factors required for chlamydial infection, we discovered that C.

View Article and Find Full Text PDF

Arthritis is characterised by the proteolytic degradation of articular cartilage leading to a loss of joint function. Articular cartilage is composed of an extracellular matrix of proteoglycans and collagens. We have previously shown that serine proteinases are involved in the activation cascades leading to cartilage collagen degradation.

View Article and Find Full Text PDF

Endocannabinoids exert an important neuromodulatory role via presynaptic cannabinoid CB1 receptors and may also participate in the control of neural cell death and survival. The function of the endocannabinoid system has been extensively studied in differentiated neurons, but its potential role in neural progenitor cells remains to be elucidated. Here we show that the CB1 receptor and the endocannabinoid-inactivating enzyme fatty acid amide hydrolase are expressed, both in vitro and in vivo, in postnatal radial glia (RC2+ cells) and in adult nestin type I (nestin(+)GFAP+) neural progenitor cells.

View Article and Find Full Text PDF